Journal of Korean Academy of Nursing Administration
/
v.20
no.5
/
pp.545-557
/
2014
Purpose: The purpose of this study was to develop a patient classification system based on nursing care intensity for patients with acute stroke-related symptoms and verify its validity and reliability. Methods: Data were collected between November, 2013 and February, 2014. The verification for content validity of the patient classification system was conducted by a group of seven professionals. Both interrater reliability and concurrent validity were verified at stroke units in tertiary hospitals. Results: The intensive nursing care for acute stroke patients consisted of 14 classified domains and 56 classified contents by adding 'neurological assessment and observation' and 'respiratory care': 'hygiene', 'nutrition', 'elimination', 'mobility and exercise', 'education or counselling', 'emotional support', 'communication', 'treatment and examination', 'medication', 'assessment and observation', 'neurological assessment and observation', 'respiratory care', 'coordination between departments', and 'discharge or transfer care'. Each domain was classified into four levels such as Class I, Class II, Class III, and Class IV. Conclusion: The results show that this patient classification system has satisfactory validity for content and concurrent and verified reliability and can be used to accurately estimate the demand for nursing care for patients in stroke units.
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.150-156
/
2023
For a doctor, diagnosing a patient's heart disease is not easy. It takes the ability and experience with high flying hours to be able to accurately diagnose the type of patient's heart disease based on the existing factors in the patient. Several studies have been carried out to develop tools to identify types of heart disease in patients. However, most only focus on the results of patient answers and lab results, the rest use only echocardiography data or electrocardiogram results. This research was conducted to test how accurate the results of the classification of heart disease by using two medical data, namely echocardiography and electrocardiogram. Three treatments were applied to the two medical data and analyzed using the decision tree approach. The first treatment was to build a classification model for types of heart disease based on echocardiography and electrocardiogram data, the second treatment only used echocardiography data and the third treatment only used electrocardiogram data. The results showed that the classification of types of heart disease in the first treatment had a higher level of accuracy than the second and third treatments. The accuracy level for the first, second and third treatment were 78.95%, 73.69% and 50%, respectively. This shows that in order to diagnose the type of patient's heart disease, it is advisable to look at the records of both the patient's medical data (echocardiography and electrocardiogram) to get an accurate level of diagnosis results that can be accounted for.
A new patient classification system, SLC System was introduced. It has been implemented in the Friendship Village Extended Care Facility in St. Louis, Missouri, USA, and it has shown that the system not only simplified the job but also increased the job e
Journal of Korean Academy of Nursing Administration
/
v.4
no.1
/
pp.229-246
/
1998
This dissertation classifies sample patients by a measure of K-DRG to identify the most frequent group. and investigates the differences in the dependency of nursing by patient classification system in the SICU of Seoul National University Hospital in Korea. It also calculates the mean nursing care hours and costs per craniotomy patient, who is shown to be the most frequent patient group. The results of the research can be used as basic data for the development of relevant nursing cost system in the future. The results of the research are as follows: 1. Using data from 97 sample patients, as many as 26 groups are identified when the patients are classified by K-DRG. KDRG-001 (craniotomy) is found to be the most frequent group(43.30%). 2. The result from patient classification system grouping in craniotomy patients shows homogeneity in terms of dependency of nursing with 35 patients in the 4th group, 145 patients(74.36%) are in the 5th group. and 15 patients are in the 6th group among the total 195 sample patients. 3. The direct nursing care hours for the 4th, 5th, and 6th patient classification system groups are found to be 381 minuites. 483 minuites, and 519 minuites, respectively, which shows that the nursing care hours increases as the dependency of nursing is intensified. The indirect nursing care hours are found to be 454 minuites(7.57 hours). The total mean nursing care hours, which is the sum of the direct nursing care hours(467 min.: 7.78 hours) and the indirect nursing care hours (454 min.: 7.57 hours), is 921 minuites(15.35 hours) per patient a day. 4. The nursing care cost is calculated to be 123,297 won per patient a day. Considering the average duration in the ICU, we can find the total nursing care cost is 610,318 won.
Park, Jong Joo;Ko, Seung Woo;Kong, Kyung Kwan;Go, Ho Yeon;Moon, Ju Ho
Journal of Physiology & Pathology in Korean Medicine
/
v.27
no.4
/
pp.460-464
/
2013
The purpose of this case was to report the effect of Korean medical treatment for patient with pleural effusion due to congestive heart failure. The patient was treated with herbal medicine(Cheongsingeonbi-tang) and acupuncture. The effect of treatment was evaluated by chest X-ray, New York Heart Association(NYHA) functional classification, and Hugh-Jones classification. After 3 weeks of treatment, the amount of pleural effusion was decreased and NYHA class, Hugh-Jones grade were improved. NYHA functional classification improved class III to II and Hugh-Jones classification changed grade IV to II. This result suggests that herbal medicine(Cheongsingeonbi-tang) and acupuncture treatment might have an effect on patient with pleural effusion due to congestive heart failure.
Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.
Park, Jung-Ho;Sung, Young-Hee;Kim, Eul-Soon;Park, Kwang-Ok;Park, Jung-Sook;Sung, Il-Soon;Song, Mi-Sook;Cho, Moon-Soo
Journal of Korean Academy of Nursing Administration
/
v.8
no.2
/
pp.309-321
/
2002
Purpose: A cost analysis for nursing services in operative nursing unit, emergency nursing unit, and ambulatory nursing unit was performed using patient classification system by nursing intensity in order to determine an appropriate nursing fee schedule. Method: The data were collected from 4 secondary hospitals and 5 tertiary hospitals from November 14th 2000 to January 15th 2001. The study was conducted through four phases as follows: 1) Nursing hours of each nursing service in special nursing units were measured using three kinds of patient classification systems by nursing intensity. 2) The nursing cost of nursing services in operative nursing unit, emergency nursing unit, and ambulatory nursing units was estimated based on patient classification system by nursing intensity. Results: As a result, nursing hours by nursing intensity of each special nursing unit were measured, and every nursing cost by nursing intensity in operation room and emergency room was estimated, meanwhile, the cost of nursing services in ambulatory care units was estimated only per visit as shown in chapter 4. Conclusion: Future research on nursing cost should be extended to other special nursing units such as various intensive nursing care units, delivery room, and so on. In addition, the patient classification system should be refined for its appropriateness to apply all levels of medical institutions.
Journal of Korean Academy of Nursing Administration
/
v.14
no.3
/
pp.229-240
/
2008
Purpose: To develop the patient classification system based on the resource utilization for reimbursement of long-term care hospitals in Korea. Method: Health Insurance Review & Assessment Service (HIRA) conducted a survey in July 2006 that included 2,899 patients from 35 long-term care hospitals. To calculate resource utilization, we measured care time of direct care staff (physicians, nursing personnel, physical and occupational therapists, social workers). The survey of patient characteristics included ADL, cognitive and behavioral status, diseases and treatments. Major category criteria was developed by modified delphi method from 9 experts. Each category was divided into 2-3 groups by ADL using tree regression. Relative resource use was expressed as a case mix index (CMI) calculated as a proportion of mean resource use. Result: This patient classification system composed of 6 major categories (ultra high medical care, high medical care, medium medical care, behavioral problem, impaired cognition and reduced physical function) and 11 subgroups by ADL score. The differences of CMI between groups were statistically significant (p<.0001). Homogeneity of groups was examined by total coefficient of variation (CV) of CMI. The range of CV was 29.68-40.77%. Conclusions: This patient classification system is feasible for reimbursement of long-term care hospitals.
Objective : Patients with spinal cord injury are increasing in numbers. However, there is no reliable treatment guide in both conventional & complementary medicine. Also, there are not much clinical case of patients with spina cord injury in oriental medical field. We investigated effect of sweet BV on subacute stage patient with spinal cord injury. Method : 31-year old female patient with spinal cord injury was treated with herb medicine(TID), electro arcupunture (BID), sweet BV injection(QOD), Physical treatment(QD), and conventional-medicine. Result : We had a satisfactory result with using sweet BV injection. The patient's ASIA grade improved from 34 to 52. And Frankle classification of the patient shifted from A to B. Conclusion : We reach a conclusion Using Sweet BV improve the sensation of patient with spinal cord injury. And more study about this disease is needed.
We analyzed the terminology and classification related to the risk management of radiation treatment overseas to establish the terminology and classification system for Korea. This study investigated the terminology and classification for radiotherapy risk management through overseas research materials from related organizations and associations, including the IAEA, WHO, British group, EC, and AAPM. Overseas risk management commonly uses the terms "near miss", "incident", and "adverse event", classified according to the degree of severity. However, several organizations have ambiguous terminologies. They use the term "near miss" for events such as a near event, close call, and good catch; the term "incident" for an event; and the term "adverse event" for the likes of an accident and an event. In addition, different organizations use different classifications: a "near miss" is generally classified as "incident" in most cases but not classified as such in BIR et al. Confusion might also be caused by the disunity of the terminology and classification, and by the ambiguity of definitions. Patient safety management of medical institutions in Korea uses the terms "near miss", "adverse event", and "sentinel event", which it classifies into eight levels according to the severity of risk to the patient. Therefore, the terminology and classification for radiotherapy risk management based on the patient safety management of medical institutions in Korea will help in improving the safety and quality of radiotherapy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.