• Title/Summary/Keyword: pathway genome database

Search Result 52, Processing Time 0.028 seconds

Genome Wide Expression Analysis of the Effect of Pinelliae Rhizoma Extract on Psychological Stress (반하(半夏)가 스트레스로 인한 생쥐의 뇌조직 유전자변화에 미치는 영향 연구)

  • Jeong, Jong-Hyo;Cho, Su-In;Song, Young-Gil;Kim, Ha-Na;Kim, Kyeong-Ok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.1
    • /
    • pp.63-78
    • /
    • 2015
  • Objectives: Pinelliae Rhizoma has traditionally been used as an anti-depressant in oriental medicine. This study is to investigate the effect of Pinelliae Rhizoma extract (PRe) on psychological stress in genome wild expression of mice. Methods: After giving physical stress to mice, PRe was orally administered with 100 mg/kg/day for five days. After extracting whole brain tissue from the mice, their genome changes were observed by micorarray analysis method. The genome changes were analyzed by IMAGENE 4.0, TREEVIEW, FatiGo algorithems, BOND database, cytoscape program, etc. Results: 1. PRe administered group were remained at normal level; 60% of increase was shown in expressed genes by physical stress, and 65% of decrease was shown in expressed genes by psychological stress. 2. Genes with increased expression in control group that remained at a normal state in PRe administered group were involved with the gene of a cellular metabolic process on biological process, protein binding on molecular function, and cell part on cell composition. The pathway was found to be cytokin-cytokin receptor interaction. 3. Genes with decreased expression in control group that remained at a normal state in PRe administered group were involved with the gene of a cellular metabolic process on biologiacl detail and coupled ATPaes activity on molecular function. This gene related path was Ubiquintin mediated proteolysis etc. 4. Core node genes analyzed by protein interaction network were Vinculin, Cell sdivision cycle 42 homolog (S. cerevisiae) etc. They played an important role in maintaining cytoskeleton and controlling cell cycle. Conclusions: Several genes were up-regulated and down-regulated in response to psychological stress. The expression of most of the genes that were altered in response to psychological stress was restored to normal levels in PRe treated mice. When the interaction network information was analyzed, the recovery of the core node genes in PRe treated mice indicates that this final set of genes may be the effective target of PRe.

Genome-wide survey and expression analysis of F-box genes in wheat

  • Kim, Dae Yeon;Hong, Min Jeong;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.141-141
    • /
    • 2017
  • The ubiquitin-proteasome pathway is the major regulatory mechanism in a number of cellular processes for selective degradation of proteins and involves three steps: (1) ATP dependent activation of ubiquitin by E1 enzyme, (2) transfer of activated ubiquitin to E2 and (3) transfer of ubiquitin to the protein to be degraded by E3 complex. F-box proteins are subunit of SCF complex and involved in specificity for a target substrate to be degraded. F-box proteins regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence. However, little is known about the F-box genes in wheat. The draft genome sequence of wheat (IWGSC Reference Sequence v1.0 assembly) used to analysis a genome-wide survey of the F-box gene family in wheat. The Hidden Markov Model (HMM) profiles of F-box (PF00646), F-box-like (PF12937), F-box-like 2 (PF13013), FBA (PF04300), FBA_1 (PF07734), FBA_2 (PF07735), FBA_3 (PF08268) and FBD (PF08387) domains were downloaded from Pfam database were searched against IWGSC Reference Sequence v1.0 assembly. RNA-seq paired-end libraries from different stages of wheat, such as stages of seedling, tillering, booting, day after flowering (DAF) 1, DAF 10, DAF 20, and DAF 30 were conducted and sequenced by Illumina HiSeq2000 for expression analysis of F-box protein genes. Basic analysis including Hisat, HTseq, DEseq, gene ontology analysis and KEGG mapping were conducted for differentially expressed gene analysis and their annotation mappings of DEGs from various stages. About 950 F-box domain proteins identified by Pfam were mapped to wheat reference genome sequence by blastX (e-value < 0.05). Among them, more than 140 putative F-box protein genes were selected by fold changes cut-offs of > 2, significance p-value < 0.01, and FDR<0.01. Expression profiling of selected F-box protein genes were shown by heatmap analysis, and average linkage and squared Euclidean distance of putative 144 F-box protein genes by expression patterns were calculated for clustering analysis. This work may provide valuable and basic information for further investigation of protein degradation mechanism by ubiquitin proteasome system using F-box proteins during wheat development stages.

  • PDF

Pedigree Analysis of 17 High Quality Korean Rice Cultivars Using Web Database Systems

  • Yi, Gi-Hwan;Park, Dong-Soo;Chung, Eun-Sook;Song, Song-Yi;Jeon, Nam-Soo;Nam, Min-Hee;Kim, Doh-Hoon;Han, Chang-Deok;Eun, Moo-Young;Ku, Yeon-Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.554-564
    • /
    • 2006
  • It is important to understand pedigree of rice cultivars commonly used for breeding. In this paper, pedigree tables for tracking the pedigree of 17 representative rice cultivars recommended by Rural development Adminstration (RDA) were completed and analyzed using two kinds of web database system; 'IRIS' and 'RRDB'. Seven cultivars, namely, 'Sangmibyeo', 'Ilpumbyeo', 'Saegewhabyeo', 'Surabyeo', 'Shindongjinbyeo', 'Ilmibyeo' and 'Jungwhabyeo' had 'Koshihikari' on the pedigree of their ancestor. Besides 'Koshihikari', the most feguently used ancestral germplasms among the high quality rice cultivars were 'Fujisaka 5', 'Kameno o' and 'Asahi', 'Fujisaka 5' was used as ancestral parent in 12 out of 17 cultivars. Interestingly, 'Kameno o' was used in pedigree of 16 out of 17 high quality varieties and 'Asahi' was used in the ancestral pedigree of all 17 varieties. 'Hwayeongbyeo' was used as one of parent in the breeding of 'Dongjin 1', 'Hwabongbyeo', 'Saegewhabyeo' and 'Junambyeo'. 'Ilpumbyeo' was used in the breeding pathway of 'Junambyeo' and 'Saegewhabyeo', 'Mangeumbyeo' itself was not enlisted as one of high quality rice cultivars, but was used as a breeding parent of three high quality varieties, namely, 'Saegewhabyeo', 'Hwabongbyeo' and 'Nampyeongbyeo'. Incorporated with evaluation data, pedigree will provide a valuable chance to genealogical tracking of agronomic traits such as disease resistance, grain quality and etc.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Detection of genome-wide structural variations in the Shanghai Holstein cattle population using next-generation sequencing

  • Liu, Dengying;Chen, Zhenliang;Zhang, Zhe;Sun, Hao;Ma, Peipei;Zhu, Kai;Liu, Guanglei;Wang, Qishan;Pan, Yuchun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.320-333
    • /
    • 2019
  • Objective: The Shanghai Holstein cattle breed is susceptible to severe mastitis and other diseases due to the hot weather and long-term humidity in Shanghai, which is the main distribution centre for providing Holstein semen to various farms throughout China. Our objective was to determine the genetic mechanisms influencing economically important traits, especially diseases that have huge impact on the yield and quality of milk as well as reproduction. Methods: In our study, we detected the structural variations of 1,092 Shanghai Holstein cows by using next-generation sequencing. We used the DELLY software to identify deletions and insertions, cn.MOPS to identify copy-number variants (CNVs). Furthermore, we annotated these structural variations using different bioinformatics tools, such as gene ontology, cattle quantitative trait locus (QTL) database and ingenuity pathway analysis (IPA). Results: The average number of high-quality reads was 3,046,279. After filtering, a total of 16,831 deletions, 12,735 insertions and 490 CNVs were identified. The annotation results showed that these mapped genes were significantly enriched for specific biological functions, such as disease and reproduction. In addition, the enrichment results based on the cattle QTL database showed that the number of variants related to milk and reproduction was higher than the number of variants related to other traits. IPA core analysis found that the structural variations were related to reproduction, lipid metabolism, and inflammation. According to the functional analysis, structural variations were important factors affecting the variation of different traits in Shanghai Holstein cattle. Our results provide meaningful information about structural variations, which may be useful in future assessments of the associations between variations and important phenotypes in Shanghai Holstein cattle. Conclusion: Structural variations identified in this study were extremely different from those of previous studies. Many structural variations were found to be associated with mastitis and reproductive system diseases; these results are in accordance with the characteristics of the environment that Shanghai Holstein cattle experience.

Identification of key genes and carcinogenic pathways in hepatitis B virus-associated hepatocellular carcinoma through bioinformatics analysis

  • Sang-Hoon Kim;Shin Hwang;Gi-Won Song;Dong-Hwan Jung;Deok-Bog Moon;Jae Do Yang;Hee Chul Yu
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.26 no.1
    • /
    • pp.58-68
    • /
    • 2022
  • Backgrounds/Aims: Mechanisms for the development of hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients remain unclear. The aim of the present study was to identify genes and pathways involved in the development of HBV-associated HCC. Methods: The GSE121248 gene dataset, which included 70 HCCs and 37 adjacent liver tissues, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HCCs and adjacent liver tissues were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were then performed. Results: Of 134 DEGs identified, 34 were up-regulated and 100 were down-regulated in HCCs. The 34 up-regulated DEGs were mainly involved in nuclear division, organelle fission, spindle and midbody formation, histone kinase activity, and p53 signaling pathway, whereas the 100 down-regulated DEGs were involved in steroid and hormone metabolism, collagen-coated extracellular matrix, oxidoreductase activity, and activity on paired donors, including incorporation or reduction of molecular oxygen, monooxygenase activity, and retinol metabolism. Analyses of protein-protein interaction networks with a high degree of connectivity identified significant modules containing 14 hub genes, including ANLN, ASPM, BUB1B, CCNB1, CDK1, CDKN3, ECT2, HMMR, NEK2, PBK, PRC1, RACGAP1, RRM2, and TOP2A, which were mainly associated with nuclear division, organelle fission, spindle formation, protein serine/threonine kinase activity, p53 signaling pathway, and cell cycle. Conclusions: This study identified key genes and carcinogenic pathways that play essential roles in the development of HBV-associated HCC. This may provide important information for the development of diagnostic and therapeutic targets for HCC.

Analysis of copy number variation in 8,842 Korean individuals reveals 39 genes associated with hepatic biomarkers AST and ALT

  • Kim, Hyo-Young;Cho, Seo-Ae;Yu, Jeong-Mi;Sung, Sam-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.547-553
    • /
    • 2010
  • Biochemical tests such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are useful for diagnosing patients with liver disease. In this study, we tested the association between copy number variation and the hepatic biomarkers AST and ALT based on 8,842 samples from population-based cohorts in Korea. We used Affymetrix Genome-Wide Human 5.0 arrays and identified 10,534 CNVs using HelixTree software. Of the CNVs tested using univariate linear regression, 100 CNVs were significant for AST and 16 were significant for ALT (P < 0.05). We identified 39 genes located within the CNV regions. DKK1 and HS3ST3B1 were shown to play roles in heparan sulfate biosynthesis and the Wnt signaling pathway, respectively. NAF1 and NPY1R were associated with glycoprotein processes and neuropeptide Y receptor activity based on GO categories. PTER, SOX14 and TM7SF4 were expressed in liver. DPYS and CTSC were found to be associated with dihydropyrimidinuria and Papillon-Lefevre syndrome phenotypes using OMIM. NPY5R was found to be associated with dyslipidemia using the Genetic Association Database.

Directed Causal Network Construction Using Linkage Analysis with Metabolic Syndrome-Related Expression Quantitative Traits

  • Kim, Kyee-Zu;Min, Jin-Young;Kwon, Geun-Yong;Sung, Joo-Hon;Cho, Sung-Il
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.143-151
    • /
    • 2011
  • In this study, we propose a novel, intuitive method of constructing an expression quantitative trait (eQT) network that is related to the metabolic syndrome using LOD scores and peak loci for selected eQTs, based on the concept of gene-gene interactions. We selected 49 eQTs that were related to insulin resistance. A variance component linkage analysis was performed to explore the expression loci of each of the eQTs. The linkage peak loci were investigated, and the "support zone" was defined within boundaries of an LOD score of 0.5 from the peak. If one gene was located within the "support zone" of the peak loci for the eQT of another gene, the relationship was considered as a potential "directed causal pathway" from the former to the latter gene. SNP markers under the linkage peaks or within the support zone were searched for in the database to identify the genes at the loci. Two groups of gene networks were formed separately around the genes IRS2 and UGCGL2. The findings indicated evidence of networks between genes that were related to the metabolic syndrome. The use of linkage analysis enabled the construction of directed causal networks. This methodology showed that characterizing and locating eQTs can provide an effective means of constructing a genetic network.

Progress and Prospect of Rice Biotechnology in Korea

  • Tae Young, Chung
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 1997.06a
    • /
    • pp.23-49
    • /
    • 1997
  • This is a progress report of rice biotechnology including development of gene transformation system, gene cloning and molecular mapping in rice. The scope of the research was focused on the connection between conventional breeding and biotech-researches. Plant transformation via Agrobacterium or particle bombardment was developed to introduce one or several genes to recommended rice cultivars. Two chimeric genes containing a maize ribosome inactivating protein gene (RIP) and a gerbicide resistant gene (bar) were introduced to Nipponbare, a Japonica cultivar, and transmitted to Korean cultivars. The homozygous progenies of herbicide resistant transgenic plant showed good fertility and agronomic characters. To explore the genetic resourses in rice, over 8,000 cDNA clones from immature rice seed have been isolated and sequenced. About 13% of clones were identified as enzymes related to metabolic pathway. Among them, twenty clones have high homology with genes encoding enzymes in the photorespiratory carbon cycle reaction. Up to now about 100 clones were fully sequenced and registered at EMBL and GenBank. For the mapping of quantitative tarits loci (QTL) and eternal recombinant inbred population with 164 F13 lines (MGRI) was developed from a cross between Milyang 23 and Gihobyeo, Korean rice cultivars. After construction of fully saturated RFLP and AFLP map, quantitative traits using MGRI population were analyzed and integrated into the molecular map. Eighty seven loci were determined with 27 QTL characters including yield and yield components on rice chromosomes. Map based cloning was also tried to isolate semi-dwarf (sd-1) gene in rice. A DNA probe, RG 109, the most tightly linked to sd-1 gene was used to screen from bacterial artifical chromosome (BAC) libraries and five over lapping clones presumably containing sd-1 gene were isolated. Rice genetic database including results of biotech reasearch and classical genetics is provided at Korea Rice Genome Server which is accessible with world wide web (www) browser. The server provides rice cDNA sequences and map informations linked with phenotypic images.

Pathogenesis and prognosis of primary oral squamous cell carcinoma based on microRNAs target genes: a systems biology approach

  • Taherkhani, Amir;Dehto, Shahab Shahmoradi;Jamshidi, Shokoofeh;Shojaei, Setareh
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.27.1-27.13
    • /
    • 2022
  • Oral squamous cell carcinoma (OSCC) is the most prevalent head and neck malignancy, with frequent cervical lymph-node metastasis, leading to a poor prognosis in OSCC patients. The present study aimed to identify potential markers, including microRNAs (miRNAs) and genes, significantly involved in the etiology of early-stage OSCC. Additionally, the main OSCC's dysregulated Gene Ontology annotations and significant signaling pathways were identified. The dataset GSE45238 underwent multivariate statistical analysis in order to distinguish primary OSCC tissues from healthy oral epithelium. Differentially expressed miRNAs (DEMs) with the criteria of p-value < 0.001 and |Log2 fold change| > 1.585 were identified in the two groups, and subsequently, validated targets of DEMs were identified. A protein interaction map was constructed, hub genes were identified, significant modules within the network were illustrated, and significant pathways and biological processes associated with the clusters were demonstrated. Using the GEPI2 database, the hub genes' predictive function was assessed. Compared to the healthy controls, main OSCC had a total of 23 DEMs. In patients with head and neck squamous cell carcinoma (HNSCC), upregulation of CALM1, CYCS, THBS1, MYC, GATA6, and SPRED3 was strongly associated with a poor prognosis. In HNSCC patients, overexpression of PIK3R3, GIGYF1, and BCL2L11 was substantially correlated with a good prognosis. Besides, "proteoglycans in cancer" was the most significant pathway enriched in the primary OSCC. The present study results revealed more possible mechanisms mediating primary OSCC and may be useful in the prognosis of the patients with early-stage OSCC.