• Title/Summary/Keyword: pathway enrichment

Search Result 108, Processing Time 0.024 seconds

Isolation and Characterization of Naturally Occuring Bacteria Carried TOL Plasmid (TOL 플라스미드 세균의 분리와 특성)

  • Nam, Cho-Byung;Cho, In-Sun;Rhee, Young-Ha;Ryu, Jae-Keun;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.321-326
    • /
    • 1989
  • Eighty two bacterial strains have been isolated from five different soil and sewage samples by selective enrichment culture on m-toluate minimal medium. Two of these were identified as Pseudomonas capacia, one as P. putida, one as Yersinia intermedia, and one as Flavobaeterium odoratum. P. cepacia SUB37 appeared to carry plasmid superficially similar to TOL plasmid previously described in p. putida mt-2 and other two plasmids from Flavobacterium odorutum and Y. intermedia larger than that of p. putida mt-2. p. cepacia SUB37 was sensitive to streptomycin but resistant to rifampicin. P. cepacia SUB37 carrying plasmid metabolizes the hydrocarbons to benzoate and toluates via the corresponding alcohols and aldehydes. By the curing experiment, it appears that P. cepacia SUB37 carries TOL plasmid encoding for the enzymes responsible for the catabolism of toluene and xylene via benzoate and the toluates and then by meta pathway in the process of degradation of aromatic hydrocarbons. p. cepacia SUB37 degraded m-toluate rapidly to be very low level when it was fully grown.

  • PDF

Identifying Differentially Expressed Genes and Small Molecule Drugs for Prostate Cancer by a Bioinformatics Strategy

  • Li, Jian;Xu, Ya-Hong;Lu, Yi;Ma, Xiao-Ping;Chen, Ping;Luo, Shun-Wen;Jia, Zhi-Gang;Liu, Yang;Guo, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5281-5286
    • /
    • 2013
  • Purpose: Prostate cancer caused by the abnormal disorderly growth of prostatic acinar cells is the most prevalent cancer of men in western countries. We aimed to screen out differentially expressed genes (DEGs) and explore small molecule drugs for prostate cancer. Materials and Methods: The GSE3824 gene expression profile of prostate cancer was downloaded from Gene Expression Omnibus database which including 21 normal samples and 18 prostate cancer cells. The DEGs were identified by Limma package in R language and gene ontology and pathway enrichment analyses were performed. In addition, potential regulatory microRNAs and the target sites of the transcription factors were screened out based on the molecular signature database. In addition, the DEGs were mapped to the connectivity map database to identify potential small molecule drugs. Results: A total of 6,588 genes were filtered as DEGs between normal and prostate cancer samples. Examples such as ITGB6, ITGB3, ITGAV and ITGA2 may induce prostate cancer through actions on the focal adhesion pathway. Furthermore, the transcription factor, SP1, and its target genes ARHGAP26 and USF1 were identified. The most significant microRNA, MIR-506, was screened and found to regulate genes including ITGB1 and ITGB3. Additionally, small molecules MS-275, 8-azaguanine and pyrvinium were discovered to have the potential to repair the disordered metabolic pathways, abd furthermore to remedy prostate cancer. Conclusions: The results of our analysis bear on the mechanism of prostate cancer and allow screening for small molecular drugs for this cancer. The findings have the potential for future use in the clinic for treatment of prostate cancer.

Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639

  • Park, Jungwook;Lee, Areum;Lee, Hyun-Hee;Park, Inmyoung;Seo, Young-Su;Cha, Jaeho
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1157-1167
    • /
    • 2018
  • Sulfolobus species can grow on a variety of organic compounds as carbon and energy sources. These species degrade glucose to pyruvate by the modified branched Entner-Doudoroff pathway. We attempted to determine the differentially expressed genes (DEGs) under sugar-limited and sugar-rich conditions. RNA sequencing (RNA-seq) was used to quantify the expression of the genes and identify those DEGs between the S. acidocaldarius cells grown under sugar-rich (YT with glucose) and sugar-limited (YT only) conditions. The functions and pathways of the DEGs were examined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time PCR (qRT-PCR) was performed to validate the DEGs. Transcriptome analysis of the DSM 639 strain grown on sugar-limited and sugar-rich media revealed that 853 genes were differentially expressed, among which 481 were upregulated and 372 were downregulated under the glucose-supplemented condition. In particular, 70 genes showed significant changes in expression levels of ${\geq}$ twofold. GO and KEGG enrichment analyses revealed that the genes encoding components of central carbon metabolism, the respiratory chain, and protein and amino acid biosynthetic machinery were upregulated under the glucose condition. RNA-seq and qRT-PCR analyses indicated that the sulfur assimilation genes (Saci_2197-2204) including phosphoadenosine phosphosulfate reductase and sulfite reductase were significantly upregulated in the presence of glucose. The present study revealed metabolic networks in S. acidocaldarius that are induced in a glucose-dependent manner, improving our understanding of biomass production under sugar-rich conditions.

Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population

  • Laodim, Thawee;Elzo, Mauricio A.;Koonawootrittriron, Skorn;Suwanasopee, Thanathip;Jattawa, Danai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.4
    • /
    • pp.508-518
    • /
    • 2019
  • Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study

  • Liu, Ying;Zheng, Jing;Zhang, Hong Ping;Zhang, Xin;Wang, Lei;Wood, Lisa;Wang, Gang
    • Allergy, Asthma & Immunology Research
    • /
    • v.10 no.6
    • /
    • pp.628-647
    • /
    • 2018
  • Purpose: Obesity is associated with metabolic dysregulation, but the underlying metabolic signatures involving clinical and inflammatory profiles of obese asthma are largely unexplored. We aimed at identifying the metabolic signatures of obese asthma. Methods: Eligible subjects with obese (n = 11) and lean (n = 22) asthma underwent body composition and clinical assessment, sputum induction, and blood sampling. Sputum supernatant was assessed for interleukin $(IL)-1{\beta}$, -4, -5, -6, -13, and tumor necrosis factor $(TNF)-{\alpha}$, and serum was detected for leptin, adiponectin and C-reactive protein. Untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolic profiles in sputum, serum and peripheral blood monocular cells (PBMCs) were analyzed by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway topology enrichment analysis. The differential metabolites were further validated by correlation analysis with body composition, and clinical and inflammatory profiles. Results: Body composition, asthma control, and the levels of $IL-1{\beta}$, -4, -13, leptin and adiponectin in obese asthmatics were significantly different from those in lean asthmatics. OPLS-DA analysis revealed 28 differential metabolites that distinguished obese from lean asthmatic subjects. The validation analysis identified 18 potential metabolic signatures (11 in sputum, 4 in serum and 2 in PBMCs) of obese asthmatics. Pathway topology enrichment analysis revealed that cyanoamino acid metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, pentose phosphate pathway in sputum, and glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and pentose phosphate pathway in serum are suggested to be significant pathways related to obese asthma. Conclusions: GC-TOF-MS-based metabolomics indicates obese asthma is characterized by a metabolic profile different from lean asthma. The potential metabolic signatures indicated novel immune-metabolic mechanisms in obese asthma with providing more phenotypic and therapeutic implications, which needs further replication and validation.

Ginsenoside Rk1 inhibits HeLa cell proliferation through an endoplasmic reticulum signaling pathway

  • Qiuyang Li;Hang Sun;Shiwei Liu;Jinxin Tang;Shengnan Liu;Pei Yin;Qianwen Mi;Jingsheng Liu;Lei yu;Yunfeng Bi
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.645-653
    • /
    • 2023
  • Background: Changes to work-life balance has increased the incidence of cervical cancer among younger people. A minor ginseng saponin known as ginsenoside Rk1 can inhibit the growth and survival of human cancer cells; however, whether ginsenoside Rk1 inhibits HeLa cell proliferation is unknown. Methods and results: Ginsenoside Rk1 blocked HeLa cells in the G0/G1 phase in a dose-dependent manner and inhibited cell division and proliferation. Ginsenoside Rk1 markedly also activated the apoptotic signaling pathway via caspase 3, PARP, and caspase 6. In addition, ginsenoside Rk1 increased LC3B protein expression, indicating the promotion of the autophagy signaling pathway. Protein processing in the endoplasmic reticulum signaling pathway was downregulated in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, consistent with teal-time quantitative PCR and western blotting that showed YOD1, HSPA4L, DNAJC3, and HSP90AA1 expression levels were dramatically decreased in HeLa cells treated with ginsenoside Rk1, with YOD1 was the most significantly inhibited by ginsenoside Rk1 treatment. Conclusion: These findings indicate that the toxicity of ginsenoside Rk1 in HeLa cells can be explained by the inhibition of protein synthesis in the endoplasmic reticulum and enhanced apoptosis, with YOD1 acting as a potential target for cervical cancer treatment.

Analysis of Molecular Pathways in Pancreatic Ductal Adenocarcinomas with a Bioinformatics Approach

  • Wang, Yan;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2561-2567
    • /
    • 2015
  • Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors

  • Han, Jeong A.;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.15 no.2
    • /
    • pp.56-64
    • /
    • 2017
  • We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor ${\beta}$ receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

RNAseq-based Transcriptome Analysis of Burkholderia glumae Quorum Sensing

  • Kim, Sunyoung;Park, Jungwook;Kim, Ji Hyeon;Lee, Jongyun;Bang, Bongjun;Hwang, Ingyu;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.249-259
    • /
    • 2013
  • Burkholderia glumae causes rice grain rot and sheath rot by producing toxoflavin, the expression of which is regulated by quorum sensing (QS). The QS systems of B. glumae rely on N-octanoyl homoserine lactone, synthesized by TofI and its cognate receptor TofR, to activate the genes for toxoflavin biosynthesis and an IclR-type transcriptional regulator gene, qsmR. To understand genome-wide transcriptional profiling of QS signaling, we employed RNAseq of the wild-type B. glumae BGR1 with QS-defective mutant, BGS2 (BGR1 tofI::${\Omega}$) and QS-dependent transcriptional regulator mutant, BGS9 (BGR1 qsmR::${\Omega}$). A comparison of gene expression profiling among the wild-type BGR1 and the two mutants before and after QS onset as well as gene ontology (GO) enrichment analysis from differential expressed genes (DEGs) revealed that genes involved in motility were highly enriched in TofI-dependent DEGs, whereas genes for transport and DNA polymerase were highly enriched in QsmR-dependent DEGs. Further, a combination of pathways with these DEGs and phenotype analysis of mutants pointed to a couple of metabolic processes, which are dependent on QS in B. glumae, that were directly or indirectly related with bacterial motility. The consistency of observed bacterial phenotypes with GOs or metabolic pathways in QS-regulated genes implied that integration RNAseq with GO enrichment or pathways would be useful to study bacterial physiology and phenotypes.