본 논문에는 표면 형태만을 고려한 방법으로 다수의 단면 영상 데이터로부터, 관심있는 기관의 외부 표면을 패치(patch)에 의한 방법으로 재구성하여 삼차원적으로 표시하는 것을 목적으로 한다. 이를 위해 본 논문에서는 표면을 형성하기 위한 특징점을 추출하기 위하여 제거법에 의한 특징점 추출이라는 알고리즘을 제안하여 사용하였으며, 표면을 재구성하기 윟나 과정에서 두 단면의 영상의 특징점 사이의 최소 거리를 비용 함수로 사용하는 방법을 제안하였다. 제안한 알고리즘의 효용성을 확인하기 위하여 두부에 대한 이차원 CT 영상을 사용하여 실험을 실시하고 다른 방법과 비교하여 보았다.
이 논문에서는 작물 분류를 목적으로 합성곱 신경망 구조에 다중 규모의 입력 영상으로부터 추출가능한 다양한 공간특징을 가중 결합하는 모델을 제안하였다. 제안 모델은 합성곱 계층에서 서로 다른 크기의 입력패치를 이용하여 공간특징을 추출한 후, squeeze-and-excitation block을 통해 추출한 공간특징의 중요도에 따라 가중치를 부여한다. 제안 모델의 장점은 분류에 유용한 특징들을 추출하고 특징의 상대적 중요도를 분류에 이용하는데 있다. 제안 모델의 분류 성능을 평가하기 위해 미국 일리노이 주에서 수집한 다중시기 Landsat-8 OLI 영상을 이용한 작물 분류 사례연구를 수행하였다. 유용한 패치 크기 결정을 위해 먼저 단일 패치 모델에서 패치 크기가 작물 분류에 미치는 영향을 분석하였다. 그 후에 단일 패치 모델과 특징의 중요도를 고려하지 않는 다중 패치 모델과 분류 성능을 비교하였다. 비교 실험 결과, 제안 모델은 연구지역에서 재배하는 작물의 공간 특징을 고려함으로써 오분류 양상을 완화시켜 비교 모델들에 비해 가장 우수한 분류 정확도를 나타냈다. 분류에 유용한 공간특징의 상대적 중요도를 고려하는 제안 모델은 작물뿐만 아니라 서로 다른 공간특성을 보이는 객체 분류에도 유용하게 적용될 수 있을 것으로 기대된다.
본 논문에서는 픽셀 기반 joint BDCP (bright and dark channel prior)와 계층적 양방향 필터를 적용하여 저 복잡도를 갖는 단일 영상 기반 안개 제거 기법을 제안한다. 픽셀 기반 joint BDCP는 기존의 패치 기반 DCP에 비해 연산량을 감소시키고, 픽셀 단위의 안개값 예측을 가능하게 하여 전달량 추정의 정확성을 높인다. 또한 에지를 보존하면서 평탄화 성능이 우수한 양방향 필터를 사용하여 전달량을 정련함으로써 후광 효과(halo effect)를 줄이고, 에지 성분에 대한 계층적 적용을 통해 반복 적용에 의한 연산량의 증가를 방지한다. 안개 성분이 포함된 다양한 영상에 대해 수행한 실험 결과는 제안하는 기법이 기존의 기법에 비해 우수한 안개 제거 성능을 보이면서 저 복잡도로 실행되어 다양한 분야에 응용될 수 있음을 나타낸다.
본 논문에서는 텍스쳐 추출시 제한된 수의 참여 영상을 이용한 multi-view 영상으로부터 가장 좋은 텍스쳐를 추출하는 효과적인 알고리듬을 제안하였다. 기존의 알고리듬이 정규화된 물체 공간에서 X-Y 평면을 삼각패치로 나누고 아휜 변환에 기반한 변이 보상 모델을 이용하여 삼각패치의 텍스쳐를 추출하였다. 본 논문에서는 기존의 방법과 달리 텍스쳐 추출시 참여 영상의 수를 제한하여 multi-view 영상으로부터 가장 좋은 텍스쳐를 추출하였다. Dragon, santa, city 그리고 kid의 multi-view 영상세트에 대해 실험한 결과 제안된 알고리듬으로 텍스쳐를 추출한후 이로부터 복원된 영상의 신호 대 잡음비(SNR)는 기존의 알고리듬으로 처리된 후 복원된 영상의 신호 대 잡음비보다 평균 0.2dB 정도 개선된 결과를 얻을 수 있었다. 제안된 방법으로 부호화된 데이터로부터 복원된 영상은 기존의 방법으로 부호화된 데이터로부터 복원된 영상보다 영상의 화질이 개선됨을 관찰할 수 있었다.
본 논문에서는 CEGI (Complex Extended Gaussian Image)를 이용한 3D 메쉬 모델 워터마킹 알고리즘을 제안하였다. 제안한 알고리즘에서는 VRML 데이터의 3D 메쉬 모델을 6개 패치로 분할한 후, 각 패치의 CEGI 분포에서 복소 가중치의 크기가 큰 셀에 투영되는 메쉬의 법선 백터 방향에 워터마크를 삽입한다. 그리고 각 패치의 중점 좌표 및 CEGI 크기 분포의 우선 순위 정보를 이용하여 워터마크를 추출한다. 또한 아편 (affine) 변형된 모델에서는 패치의 초기 중점 좌표의 재배열 과정을 이용하여 원 모델의 방향으로 전환한 후, 워터마크를 추출한다. 본 논문에서 제안한 알고리즘의 성능을 평가하기 위한 실험에서 기하학적 및 위상학적 변형에 강인한 특성을 가짐을 확인하였다.
객체 검출은 다양한 컴퓨터 비전 응용 분야의 핵심 기술이지만 조명 변화와 기하학적 왜곡에 강인성을 갖기 위해서는 막대한 계산이 필요한 기술이다. 최근에 이 문제를 분류기의 토대로 체계화함으로써 효과적으로 해결하기 위한 접근법들이 소개되고 있다. 그 중 무작위 fern 알고리즘은 단순한 구조와 높은 인식 성능으로 많은 관심을 받고 있다. 그러나 기존의 무작위 fern 알고리즘은 화소간의 밝기 차이만으로 특징을 추출하고 있어 대조, 조명 변화와 같은 밝기 변화나 잡음에 대해 취약점을 갖는다. 본 논문에서는 기존의 무작위 fern의 단점을 개선하기 위해 패치의 기하학적 구조를 반영할 수 있는 깊이 정보를 결합시킨 결합형 무작위 fern을 새로이 제안하고 이를 이용한 객체 검출기의 성능 개선 방안을 제시한다. 모의실험을 통해 결합형 무작위 fern이 기존 방식보다 조명의 영향이나 잡음에 강인함을 보인다.
대한원격탐사학회 2008년도 International Symposium on Remote Sensing
/
pp.441-444
/
2008
This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.
COVID-19로 대표되는 팬데믹 상황에서 의료 인력 부족으로 인한 문제가 대두되고 있다. 본 논문에서는 진단 업무를 지원하기 위한 컴퓨터 비전 솔루션으로 PA 흉부 X-선 영상에 대한 병변 유무 진단 방법에 대해 제시한다. 디지털 영상에 대한 특징 비교 방식의 이상 탐지 기법을 X-선 영상에 적용하여 비정상적인 영역을 예측할 수 있다. 정렬된 PA 흉부 X-선 영상으로부터 특징 벡터를 추출하고 패치 단위로 분할하여 지역적으로 등장하는 비정상을 포착한다. 사전 실험으로 다중 객체를 포함하는 시뮬레이션 데이터 세트를 생성하고 이에 대한 비교 실험 결과를 제시한다. 정렬된 영상에 대해 적용 가능한 패치 특징 하드마스킹을 통해 프로세스의 효율성 및 성능을 향상하는 방법을 제시한다. 지역 특수성 및 전역 이상 탐지 결과를 합산하여 기존 연구 대비 6.9%p AUROC 향상된 성능을 보인다.
본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.
In this paper, we propose a semi-automatic method for semantic video object extraction which extracts meaningful objects from an input sequence with one correctly segmented training image. Given one correctly segmented image acquired by the user's interaction in the first frame, the proposed method automatically segments and tracks the objects in the following frames. We formulate the semantic object extraction procedure as an energy minimization problem at the fragment level instead of pixel level. The proposed energy function consists of two terms: data term and smoothness term. The data term is computed by considering patch similarity, color, and motion information. Then, the smoothness term is introduced to enforce the spatial continuity. Finally, iterated conditional modes (ICM) optimization is used to minimize energy function in a globally optimal manner. The proposed semantic video object extraction method provides faithful results for various types of image sequences.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.