• 제목/요약/키워드: patch-based image

검색결과 154건 처리시간 0.025초

단면 윤곽선을 기반으로 한 두부표변의 재구성 (Reconstruction of Head Surface based on Cross Sectional Contours)

  • 한영환;성현경;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권4호
    • /
    • pp.365-373
    • /
    • 1997
  • 본 논문에는 표면 형태만을 고려한 방법으로 다수의 단면 영상 데이터로부터, 관심있는 기관의 외부 표면을 패치(patch)에 의한 방법으로 재구성하여 삼차원적으로 표시하는 것을 목적으로 한다. 이를 위해 본 논문에서는 표면을 형성하기 위한 특징점을 추출하기 위하여 제거법에 의한 특징점 추출이라는 알고리즘을 제안하여 사용하였으며, 표면을 재구성하기 윟나 과정에서 두 단면의 영상의 특징점 사이의 최소 거리를 비용 함수로 사용하는 방법을 제안하였다. 제안한 알고리즘의 효용성을 확인하기 위하여 두부에 대한 이차원 CT 영상을 사용하여 실험을 실시하고 다른 방법과 비교하여 보았다.

  • PDF

작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델 (A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification)

  • 박민규;곽근호;박노욱
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1273-1283
    • /
    • 2019
  • 이 논문에서는 작물 분류를 목적으로 합성곱 신경망 구조에 다중 규모의 입력 영상으로부터 추출가능한 다양한 공간특징을 가중 결합하는 모델을 제안하였다. 제안 모델은 합성곱 계층에서 서로 다른 크기의 입력패치를 이용하여 공간특징을 추출한 후, squeeze-and-excitation block을 통해 추출한 공간특징의 중요도에 따라 가중치를 부여한다. 제안 모델의 장점은 분류에 유용한 특징들을 추출하고 특징의 상대적 중요도를 분류에 이용하는데 있다. 제안 모델의 분류 성능을 평가하기 위해 미국 일리노이 주에서 수집한 다중시기 Landsat-8 OLI 영상을 이용한 작물 분류 사례연구를 수행하였다. 유용한 패치 크기 결정을 위해 먼저 단일 패치 모델에서 패치 크기가 작물 분류에 미치는 영향을 분석하였다. 그 후에 단일 패치 모델과 특징의 중요도를 고려하지 않는 다중 패치 모델과 분류 성능을 비교하였다. 비교 실험 결과, 제안 모델은 연구지역에서 재배하는 작물의 공간 특징을 고려함으로써 오분류 양상을 완화시켜 비교 모델들에 비해 가장 우수한 분류 정확도를 나타냈다. 분류에 유용한 공간특징의 상대적 중요도를 고려하는 제안 모델은 작물뿐만 아니라 서로 다른 공간특성을 보이는 객체 분류에도 유용하게 적용될 수 있을 것으로 기대된다.

픽셀 기반 Joint BDCP와 계층적 양방향 필터를 적용한 단일 영상 기반 안개 제거 기법 (Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter)

  • 오원근;김종호
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.257-264
    • /
    • 2019
  • 본 논문에서는 픽셀 기반 joint BDCP (bright and dark channel prior)와 계층적 양방향 필터를 적용하여 저 복잡도를 갖는 단일 영상 기반 안개 제거 기법을 제안한다. 픽셀 기반 joint BDCP는 기존의 패치 기반 DCP에 비해 연산량을 감소시키고, 픽셀 단위의 안개값 예측을 가능하게 하여 전달량 추정의 정확성을 높인다. 또한 에지를 보존하면서 평탄화 성능이 우수한 양방향 필터를 사용하여 전달량을 정련함으로써 후광 효과(halo effect)를 줄이고, 에지 성분에 대한 계층적 적용을 통해 반복 적용에 의한 연산량의 증가를 방지한다. 안개 성분이 포함된 다양한 영상에 대해 수행한 실험 결과는 제안하는 기법이 기존의 기법에 비해 우수한 안개 제거 성능을 보이면서 저 복잡도로 실행되어 다양한 분야에 응용될 수 있음을 나타낸다.

텍스쳐 추출시 제한된 수의 참여 영상을 이용한 Multi-view 영상 개선 알고리듬 (An Algorithm for the Multi-view Image Improvement with the Resteicted Number of Images in Texture Extraction)

  • 김도현;양영일
    • 한국멀티미디어학회논문지
    • /
    • 제3권1호
    • /
    • pp.34-40
    • /
    • 2000
  • 본 논문에서는 텍스쳐 추출시 제한된 수의 참여 영상을 이용한 multi-view 영상으로부터 가장 좋은 텍스쳐를 추출하는 효과적인 알고리듬을 제안하였다. 기존의 알고리듬이 정규화된 물체 공간에서 X-Y 평면을 삼각패치로 나누고 아휜 변환에 기반한 변이 보상 모델을 이용하여 삼각패치의 텍스쳐를 추출하였다. 본 논문에서는 기존의 방법과 달리 텍스쳐 추출시 참여 영상의 수를 제한하여 multi-view 영상으로부터 가장 좋은 텍스쳐를 추출하였다. Dragon, santa, city 그리고 kid의 multi-view 영상세트에 대해 실험한 결과 제안된 알고리듬으로 텍스쳐를 추출한후 이로부터 복원된 영상의 신호 대 잡음비(SNR)는 기존의 알고리듬으로 처리된 후 복원된 영상의 신호 대 잡음비보다 평균 0.2dB 정도 개선된 결과를 얻을 수 있었다. 제안된 방법으로 부호화된 데이터로부터 복원된 영상은 기존의 방법으로 부호화된 데이터로부터 복원된 영상보다 영상의 화질이 개선됨을 관찰할 수 있었다.

  • PDF

CEGI를 이용한 3D 메쉬 워터마킹 (3D Mesh Watermarking Using CEGI)

  • 이석환;김태수;김승진;권기룡;이건일
    • 한국통신학회논문지
    • /
    • 제29권4C호
    • /
    • pp.472-484
    • /
    • 2004
  • 본 논문에서는 CEGI (Complex Extended Gaussian Image)를 이용한 3D 메쉬 모델 워터마킹 알고리즘을 제안하였다. 제안한 알고리즘에서는 VRML 데이터의 3D 메쉬 모델을 6개 패치로 분할한 후, 각 패치의 CEGI 분포에서 복소 가중치의 크기가 큰 셀에 투영되는 메쉬의 법선 백터 방향에 워터마크를 삽입한다. 그리고 각 패치의 중점 좌표 및 CEGI 크기 분포의 우선 순위 정보를 이용하여 워터마크를 추출한다. 또한 아편 (affine) 변형된 모델에서는 패치의 초기 중점 좌표의 재배열 과정을 이용하여 원 모델의 방향으로 전환한 후, 워터마크를 추출한다. 본 논문에서 제안한 알고리즘의 성능을 평가하기 위한 실험에서 기하학적 및 위상학적 변형에 강인한 특성을 가짐을 확인하였다.

RGB-D 영상 포맷을 위한 결합형 무작위 Fern을 이용한 객체 검출 (Object Detection Using Combined Random Fern for RGB-D Image Format)

  • 임승욱;김유선;이시웅
    • 한국콘텐츠학회논문지
    • /
    • 제16권9호
    • /
    • pp.451-459
    • /
    • 2016
  • 객체 검출은 다양한 컴퓨터 비전 응용 분야의 핵심 기술이지만 조명 변화와 기하학적 왜곡에 강인성을 갖기 위해서는 막대한 계산이 필요한 기술이다. 최근에 이 문제를 분류기의 토대로 체계화함으로써 효과적으로 해결하기 위한 접근법들이 소개되고 있다. 그 중 무작위 fern 알고리즘은 단순한 구조와 높은 인식 성능으로 많은 관심을 받고 있다. 그러나 기존의 무작위 fern 알고리즘은 화소간의 밝기 차이만으로 특징을 추출하고 있어 대조, 조명 변화와 같은 밝기 변화나 잡음에 대해 취약점을 갖는다. 본 논문에서는 기존의 무작위 fern의 단점을 개선하기 위해 패치의 기하학적 구조를 반영할 수 있는 깊이 정보를 결합시킨 결합형 무작위 fern을 새로이 제안하고 이를 이용한 객체 검출기의 성능 개선 방안을 제시한다. 모의실험을 통해 결합형 무작위 fern이 기존 방식보다 조명의 영향이나 잡음에 강인함을 보인다.

THE DEVELOPMENT OF CIRCULARLY POLARIZED SYNTHETIC APERTURE RADAR SENSOR MOUNTED ON UNMANNED AERIAL VEHICLE

  • Baharuddin, Merna;Akbar, Prilando Rizki;Sumantyo, Josaphat Tetuko Sri;Kuze, Hiroaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.441-444
    • /
    • 2008
  • This paper describes the development of a circularly polarized microstrip antenna, as a part of the Circularly Polarized Synthetic Aperture Radar (CP-SAR) sensor which is currently under developed at the Microwave Remote Sensing Laboratory (MRSL) in Chiba University. CP-SAR is a new type of sensor developed for the purpose of remote sensing. With this sensor, lower-noise data/image will be obtained due to the absence of depolarization problems from propagation encounter in linearly polarized synthetic aperture radar. As well the data/images obtained will be investigated as the Axial Ratio Image (ARI), which is a new data that hopefully will reveal unique various backscattering characteristics. The sensor will be mounted on an Unmanned Aerial Vehicle (UAV) which will be aimed for fundamental research and applications. The microstrip antenna works in the frequency of 1.27 GHz (L-Band). The microstrip antenna utilized the proximity-coupled method of feeding. Initially, the optimization process of the single patch antenna design involving modifying the microstrip line feed to yield a high gain (above 5 dBi) and low return loss (below -10 dB). A minimum of 10 MHz bandwidth is targeted at below 3 dB of Axial Ratio for the circularly polarized antenna. A planar array from the single patch is formed next. Consideration for the array design is the beam radiation pattern in the azimuth and elevation plane which is specified based on the electrical and mechanical constraints of the UAV CP-SAR system. This research will contribute in the field of radar for remote sensing technology. The potential application is for landcover, disaster monitoring, snow cover, and oceanography mapping.

  • PDF

PA 흉부 X-선 영상 패치 분할에 의한 지역 특수성 이상 탐지 방법 (A Method for Region-Specific Anomaly Detection on Patch-wise Segmented PA Chest Radiograph)

  • 김현빈;전준철
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.49-59
    • /
    • 2023
  • COVID-19로 대표되는 팬데믹 상황에서 의료 인력 부족으로 인한 문제가 대두되고 있다. 본 논문에서는 진단 업무를 지원하기 위한 컴퓨터 비전 솔루션으로 PA 흉부 X-선 영상에 대한 병변 유무 진단 방법에 대해 제시한다. 디지털 영상에 대한 특징 비교 방식의 이상 탐지 기법을 X-선 영상에 적용하여 비정상적인 영역을 예측할 수 있다. 정렬된 PA 흉부 X-선 영상으로부터 특징 벡터를 추출하고 패치 단위로 분할하여 지역적으로 등장하는 비정상을 포착한다. 사전 실험으로 다중 객체를 포함하는 시뮬레이션 데이터 세트를 생성하고 이에 대한 비교 실험 결과를 제시한다. 정렬된 영상에 대해 적용 가능한 패치 특징 하드마스킹을 통해 프로세스의 효율성 및 성능을 향상하는 방법을 제시한다. 지역 특수성 및 전역 이상 탐지 결과를 합산하여 기존 연구 대비 6.9%p AUROC 향상된 성능을 보인다.

무릎 MR 영상에서 다중 아틀라스 기반 지역적 가중 투표 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 (Automatic Meniscus Segmentation from Knee MR Images using Multi-atlas-based Locally-weighted Voting and Patch-based Edge Feature Classification)

  • 김순빈;김현진;홍헬렌;왕준호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제24권4호
    • /
    • pp.29-38
    • /
    • 2018
  • 본 논문에서는 무릎 MR 영상에서 반월상 연골의 자동 위치화, 다중 아틀라스 기반 지역적 가중 투표를 통한 반월상 연골 분할 및 패치 기반 윤곽선 특징 분류를 통한 반월상 연골 자동 분할 방법을 제안한다. 첫째, 뼈와 무릎 관절 연골을 분할한 후 이를 이용하여 반월상 연골의 관심볼륨영역을 자동 위치화한다. 둘째, 반월상 연골의 관심볼륨영역에서 형상 및 밝기값 분포 가중치를 고려한 다중 아틀라스 기반 지역적 가중 투표를 통해 반월상 연골을 분할한다. 셋째, 밝기값이 유사한 측부 인대로의 누출을 제거하기 위해 형상 및 거리 가중치를 고려한 패치 기반 윤곽선 특징 분류를 통해 반월상 연골 분함을 개선한다. 제안 방법을 통한 분할 결과와 수동 분할 결과 간 다이스 유사계수는 내측 반월상 연골은 80.13%, 외측 반월상 연골은 80.81%를 보였으며 다중 아틀라스 기반 지역적 가중투표를 통한 분할 방법과 비교하여 내 측 및 외측 반월상 연 골 각각 7.25%, 1.31% 향상되었다.

Energy Minimization Based Semantic Video Object Extraction

  • 김동현;최성환;김봉조;신형철;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 하계학술대회
    • /
    • pp.138-141
    • /
    • 2010
  • In this paper, we propose a semi-automatic method for semantic video object extraction which extracts meaningful objects from an input sequence with one correctly segmented training image. Given one correctly segmented image acquired by the user's interaction in the first frame, the proposed method automatically segments and tracks the objects in the following frames. We formulate the semantic object extraction procedure as an energy minimization problem at the fragment level instead of pixel level. The proposed energy function consists of two terms: data term and smoothness term. The data term is computed by considering patch similarity, color, and motion information. Then, the smoothness term is introduced to enforce the spatial continuity. Finally, iterated conditional modes (ICM) optimization is used to minimize energy function in a globally optimal manner. The proposed semantic video object extraction method provides faithful results for various types of image sequences.

  • PDF