• 제목/요약/키워드: pasternak model

검색결과 152건 처리시간 0.015초

Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model

  • Hebali, Habib;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Hussain, Muzamal;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.49-64
    • /
    • 2022
  • In this work, the bending and dynamic behaviors of advanced composite plates resting on variable visco-Pasternak foundations are studied using a simple shear deformation integral plate model. The research is carried out with a view to a three-parameter foundation including the influences of the variable Winkler coefficient, the constant Pasternak coefficient and the damping coefficient of the elastic medium. The present theory uses a displacement field with integral terms instead of derivative terms by including also the shear deformation effect without introducing the shear correction factors. The equations of motion for advanced composite plates are obtained using the Hamilton principle. Analytical solutions for the bending and dynamic analysis are deduced for simply supported plates resting on variable visco-Pasternak foundations. Some numerical results are presented to demonstrate the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the bending and dynamic responses of advanced composite plates.

The effect of visco-Pasternak foundation on the free vibration behavior of exponentially graded sandwich plates with various boundary conditions

  • Fatima, Bounouara;Salem Mohammed, Aldosari;Abdelbaki, Chikh;Abdelhakim, Kaci;Abdelmoumen Anis, Bousahla;Fouad, Bourada;Abdelouahed, Tounsi;Kouider Halim, Benrahou;Hind, Albalawi;Abdeldjebbar, Tounsi
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.367-383
    • /
    • 2023
  • In this investigation, an improved integral trigonometric shear deformation theory is employed to examine the vibrational behavior of the functionally graded (FG) sandwich plates resting on visco-Pasternak foundations. The studied structure is modelled with only four unknowns' variables displacements functions. The simplicity of the developed model being in the reduced number of variables which was made with the help of the use of the indeterminate integral in the formulation. The current kinematic takes into consideration the shear deformation effect and does not require any shear correction factors as used in the first shear deformation theory. The equations of motion are determined from Hamilton's principle with including the effect of the reaction of the visco-Pasternak's foundation. A Galerkin technique is proposed to solve the differentials governing equations, which enables one to obtain the semi-analytical solutions of natural frequencies for various clamped and simply supported FG sandwich plates resting on visco-Pasternak foundations. The validity of proposed model is checked with others solutions found in the literature. Parametric studies are performed to illustrate the impact of various parameters as plate dimension, layer thickness ratio, inhomogeneity index, damping coefficient, vibrational mode and elastic foundation on the vibrational behavior of the FG sandwich plates.

Mechanical and thermal stability investigation of functionally graded plates resting on visco-Pasternak foundation

  • Samira Hassiba Tagrara;Mohamed Mehdi hamri;Mahmoud Mohamed Selim Saleh;Mofareh Hassan Ghazwani;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.839-856
    • /
    • 2023
  • This work presents a simple four-unknown refined integral plate theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on Visco-Pasternak foundations. The proposed refined high order shear deformation theory has a new displacement field which includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Governing equations are deduced from the principle of minimum total potential energy and a Navier type analytical solution is adopted for simply supported FG plates. The Visco-Pasternak foundations is considered by adding the impact of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The accuracy of the present model is demonstrated by comparing the computed results with those available in the literature. Some numerical results are presented to show the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the mechanical and thermal buckling behaviors of FG plates.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

  • Rabia, Benferhat;Tahar, Hassaine Daouadji;Abderezak, Rabahi
    • Coupled systems mechanics
    • /
    • 제9권6호
    • /
    • pp.499-519
    • /
    • 2020
  • The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. The present formulation is based on a refined higher order shear deformation theory, which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the Winkler-Pasternak model. Anew modified power-law formulation is used to describe the material properties of FGM plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses are affected by the porosity volume fraction, constituent volume fraction, and thermal load.

Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation

  • Civalek, Omer;Ozturk, Baki
    • Geomechanics and Engineering
    • /
    • 제2권1호
    • /
    • pp.45-56
    • /
    • 2010
  • The current study presents a mathematical model and numerical method for free vibration of tapered piles embedded in two-parameter elastic foundations. The method of Discrete Singular Convolution (DSC) is used for numerical simulation. Bernoulli-Euler beam theory is considered. Various numerical applications demonstrate the validity and applicability of the proposed method for free vibration analysis. The results prove that the proposed method is quite easy to implement, accurate and highly efficient for free vibration analysis of tapered beam-columns embedded in Winkler- Pasternak elastic foundations.

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations

  • Zenkour, Ashraf M.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권3호
    • /
    • pp.269-280
    • /
    • 2017
  • The natural vibration analysis of microbeams resting on visco-Pasternak's foundation is presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the classical Euler-Bernoulli's beam theory is used for description of natural frequencies of the microbeam. The generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Nonlinear FEA of higher order beam resting on a tensionless foundation with friction

  • He, Guanghui;Li, Xiaowei;Lou, Rong
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.95-116
    • /
    • 2016
  • A novel higher order shear-deformable beam model, which provides linear variation of transversal normal strain and quadratic variation of shearing strain, is proposed to describe the beam resting on foundation. Then, the traditional two-parameter Pasternak foundation model is modified to capture the effects of the axial deformation of beam. The Masing's friction law is incorporated to deal with nonlinear interaction between the foundation and the beam bottom, and the nonlinear properties of the beam material are also considered. To solve the mathematical problem, a displacement-based finite element is formulated, and the reliability of the proposed model is verified. Finally, numerical examples are presented to study the effects of the interfacial friction between the beam and foundation, and the mechanical behavior due to the tensionless characteristics of the foundation is also examined. Numerical results indicate that the effects of tensionless characteristics of foundation and the interfacial friction have significant influences on the mechanical behavior of the beam-foundation system.

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.

Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation

  • Kumar, Puneet;Srinivas, J.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.569-578
    • /
    • 2018
  • This paper aims to investigate the transient vibration behavior of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite plate resting on Pasternak foundation under pulse excitation. The plate is considered to be composed of matrix material and multi-walled carbon nanotubes (MWCNTs) with distribution as per the functional grading concept. The functionally graded distribution patterns in nanocomposite plate are explained more appropriately with the layer-wise variation of carbon nanotubes weight fraction in the thickness coordinate. The layers are stacked up in such a way that it yields uniform and three other types of distribution patterns. The effective material properties of each layer in nanocomposite plate are obtained by modified Halpin-Tsai model and rule of mixtures. The governing equations of an illustrative case of simply-supported nanocomposite plate resting on the Pasternak foundation are derived from third order shear deformation theory and Navier's solution technique. A converge transient response of nanocompiste plate under uniformly distributed load with triangular pulse is obtained by varying number of layer in thickness direction. The validity and accuracy of the present model is also checked by comparing the results with those available in literature for isotropic case. Then, numerical examples are presented to highlight the effects of distribution patterns, foundation stiffness, carbon nanotube parameters and plate aspect ratio on the central deflection response. The results are extended with the consideration of proportional damping in the system and found that nanocomposite plate with distribution III have minimum settling time as compared to the other distributions.