• Title/Summary/Keyword: pasternak foundation

Search Result 295, Processing Time 0.031 seconds

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads

  • Behravan Rad, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.139-161
    • /
    • 2012
  • In this paper, the static behavior of bi-directional functionally graded (FG) non-uniform thickness circular plate resting on quadratically gradient elastic foundations (Winkler-Pasternak type) subjected to axisymmetric transverse and in-plane shear loads is carried out by using state-space and differential quadrature methods. The governing state equations are derived based on 3D theory of elasticity, and assuming the material properties of the plate except the Poisson's ratio varies continuously throughout the thickness and radius directions in accordance with the exponential and power law distributions. The stresses and displacements distribution are obtained by solving state equations. The effects of foundation stiffnesses, material heterogeneity indices, geometric parameters and loads ratio on the deformation and stress distributions of the FG circular plate are investigated in numerical examples. The results are reported for the first time and the new results can be used as a benchmark solution for future researches.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation

  • Natanzi, Abolfazl Jafari;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • In this study, nonlinear vibration and stability of a polymeric pipe reinforced by single-walled carbon naotubes (SWCNTs) conveying fluid-nanoparticles mixture flow is investigated. The Characteristics of the equivalent composite are determined using Mori-Tanaka model considering agglomeration effects. The surrounding elastic medium is simulated by orthotropic visco-Pasternak medium. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The influence of volume percent of SWCNTs, agglomeration, geometrical parameters of pipe, viscoelastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of pipe. Results showed the increasing volume percent of SWCNTs leads to higher frequency and critical fluid velocity.

Lowest Symmetrical and Antisymmetrical Natural Frequency Equations of Shallow Arches on Elastic Foundations (탄성지반 위에 놓인 낮은 아치의 최저차 대칭 및 역대칭 고유진동수 방정식(구조 및 재료 \circled1))

  • 이병구;박광규;오상진;서종원
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.213-218
    • /
    • 2000
  • This paper deals with the free vibrations of shallow arches resting on elastic foundations. Foundations are assumed to follow the hypothesis proposed by Pasternak. The governing differential equation is derived for the in-plane free vibration of linearly elastic arches of uniform stiffness and constant mass per unit length. Sinusoidal arches with hinged-hinged and clamped-clamped end constraints are considered in analysis. The frequency equations (lowest symmetical and antisymmetrical natural frequency equations) are obtained by Galerkin's method. The effects of arch rise, Winkler foundation parameter and shear foundation parameter on the lowest two natural frequencies are investigated.

  • PDF

Response of rigid footing on reinforced granular fill over soft soil

  • Ramu, K.;Madhav, Madhira R.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-302
    • /
    • 2010
  • An extended model for the response of a rigid footing on a reinforced foundation bed on super soft soil is proposed by incorporating the rough membrane element into the granular bed. The super soft soil, the granular bed and the reinforcement are modeled as non-linear Winkler springs, non-linear Pasternak layer and rough membrane respectively. The hyperbolic stress-displacement response of the super soft soil and the hyperbolic shear stress-shear strain response of the granular fill are considered. The finite deformation theory is used since large settlements are expected to develop due to deformation of the super-soft soil. Parametric studies quantify the effect of each parameter on the stress-settlement response of the reinforced foundation bed, the settlement and tension profiles.

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Vinyas, M.;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.

Dynamic analysis of rigid roadway pavement under moving traffic loads with variable velocity

  • Alisjahbana, S.W.;Wangsadinata, W.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.105-114
    • /
    • 2012
  • The study of rigid roadway pavement under dynamic traffic loads with variable velocity is investigated in this paper. Rigid roadway pavement is modeled as a rectangular damped orthotropic plate supported by elastic Pasternak foundation. The boundary supports of the plate are the steel dowels and tie bars which provide elastic vertical support and rotational restraint. The natural frequencies of the system and the mode shapes are solved using two transcendental equations, obtained from the solution of two auxiliary Levy's type problems, known as the Modified Bolotin Method. The dynamic moving traffic load is expressed as a concentrated load of harmonically varying magnitude, moving straight along the plate with a variable velocity. The dynamic response of the plate is obtained on the basis of orthogonality properties of eigenfunctions. Numerical example results show that the velocity and the angular frequency of the loads affected the maximum dynamic deflection of the rigid roadway pavement. It is also shown that a critical speed of the load exists. If the moving traffic load travels at critical speed, the rectangular plate becomes infinite in amplitude.