• Title/Summary/Keyword: passive wireless sensor

Search Result 38, Processing Time 0.027 seconds

Simple Contending-type MAC Scheme for Wireless Passive Sensor Networks: Throughput Analysis and Optimization

  • Park, Jin Kyung;Seo, Heewon;Choi, Cheon Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.299-304
    • /
    • 2017
  • A wireless passive sensor network is a network consisting of sink nodes, sensor nodes, and radio frequency (RF) sources, where an RF source transfers energy to sensor nodes by radiating RF waves, and a sensor node transmits data by consuming the received energy. Against theoretical expectations, a wireless passive sensor network suffers from many practical difficulties: scarcity of energy, non-simultaneity of energy reception and data transmission, and inefficiency in allocating time resources. Perceiving such difficulties, we propose a simple contending-type medium access control (MAC) scheme for many sensor nodes to deliver packets to a sink node. Then, we derive an approximate expression for the network-wide throughput attained by the proposed MAC scheme. Also, we present an approximate expression for the optimal partition, which maximizes the saturated network-wide throughput. Numerical examples confirm that each of the approximate expressions yields a highly precise value for network-wide throughput and finds an exactly optimal partition.

Optimal Design of Contending-type MAC Scheme for Wireless Passive Sensor Networks (무선 수동형 센서 망을 위한 경합형 MAC 방식의 최적 설계)

  • Choi, Cheon Won;Seo, Heewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.29-36
    • /
    • 2016
  • A wireless passive sensor network is a network which, by letting separate RF sources supply energy to sensor nodes, is able to live an eternal life without batteries. Against expectations about an eternal life, however, a wireless passive sensor network still has many problems; scarcity of energy, non-simultaneity of energy reception and data transmission and inefficiency in resource allocation. In this paper, we focus on a wireless passive sensor network providing a packet service which is tolerable to packet losses but requires timely delivery of packets. Perceiving the practical constraints, we then consider a contending-type MAC scheme, rooted in framed and slotted ALOHA, for supporting many sensor nodes to deliver packets to a sink node. Next, we investigate the network-wide throughput achieved by the MAC scheme when the packets transmitted by geographically scattered sensor nodes experience path losses hence capture phenomena. Especially, we derive an exact formula of network-wide throughput in a closed form when 2 sensor nodes reside in the network. By controlling design parameters, we finally optimize the contending-type MAC scheme as to attain the maximum network-wide throughput.

Damage index sensor for smart structures

  • Mita, Akira;Takahira, Shinpei
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.331-346
    • /
    • 2004
  • A new sensor system is proposed for measuring damage indexes. The damage index is a physical value that is well correlated to a critical damage in a device or a structure. The mechanism proposed here utilizes elastic buckling of a thin wire and does not require any external power supply for memorizing the index. The mechanisms to detect peak strain, peak displacement, peak acceleration and cumulative deformation as examples of damage indexes are presented. Furthermore, passive and active wireless data retrieval mechanisms using electromagnetic induction are proposed. The passive wireless system is achieved by forming a closed LC circuit to oscillate at its natural frequency. The active wireless sensor can transmit the data much further than the passive system at the sacrifice of slightly complicated electric circuit for the sensor. For wireless data retrieval, no wire is needed for the sensor to supply electrical power. For the active system, electrical power is supplied to the sensor by radio waves emitted from the retrieval system. Thus, external power supply is only needed for the retrieval system when the retrieval becomes necessary. Theoretical and experimental studies to show excellent performance of the proposed sensor are presented. Finally, a prototype damage index sensor installed into a 7 storey base-isolated building is explained.

A Cooperative Navigation for UAVs with Inertial Sensors and Passive Sensor Using Wireless Communication (무선통신을 이용한 관성센서 및 수동센서 장착 무인기들의 협력 항법)

  • Seong, Sang Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.102-106
    • /
    • 2013
  • A cooperative navigation method for cooperative flight of UAVs is proposed. The commonly used navigation method for UAVs is based on GNSS measurements. However, when it is not available by jamming or other causes, an alternative method is needed. In this paper, it is shown that UAVs equipped with inertial sensors, passive sensor and wireless communication link can perform accurate navigation through sharing information with each other. Firstly, the appropriate roles for sensors and wireless communication link are assigned. Secondly, a filter to perform navigation cooperative is constructed. Finally, the boundedness of estimation error of the filter under small initial estimation error is analyzed. The simulation results show that the proposed method can reduce navigation errors effectively.

Implementation of Passive Telemetry RF Sensor System Using Unscented Kalman Filter Algorithm (Unscented Kalman Filter를 이용한 원격 RF 센서 시스템 구현)

  • Kim, Kyung-Yup;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1861-1868
    • /
    • 2008
  • In this paper, Passive Telemerty RF Sensor System using Unscented Kalman Filter algorithm(UKF) is proposed. General Passive Telemerty RF Sensor System means that it should be "wireless", "implantable" and "batterless". Conventional Passive Telemerty RF Sensor System adopts Integrated Circuit type, but there are defects like complexity of structure and limit of large power consumption in some cases. In order to overcome these kinds of faults, Passive Telemetry RF Sensor System based on inductive coupling principle is proposed in this paper. Because passive components R, L, C have stray parameters in the range of high frequency such as about 200[KHz] used in this paper, Passive Telemetry RF Sensor System considering stray parameters has to be derived for accurate model identification. Proposed Passive Telemetry RF Sensor System is simple because it consists of R, L and C and measures the change of environment like pressure and humidity in the type of capacitive value. This system adopted UKF algorithm for estimation of this capacitive parameter included in nonlinear system like Passive Telemetry RF Sensor System. For the purpose of obtaining learning data pairs for UKF Algorithm, Phase Difference Detector and Amplitude Detector are proposed respectively which make it possible to get amplitude and phase between input and output voltage. Finally, it is verified that capacitive parameter of proposed Passive Telemetry RF Sensor System using UKF algorithm can be estimated in noisy environment efficiently.

Elementary MAC Scheme Based on Slotted ALOHA for Wireless Passive Sensor Networks (무선 수동형 센서 망을 위한 Slotted ALOHA 기반의 기본적인 MAC 방식)

  • Choi, Cheon Won;Seo, Heewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • A wireless passive sensor network is a network which, by letting RF sources supply energy to sensor nodes, is - at least theoretically - able to live an eternal life without batteries. Due to the technological immaturity, however, a wireless passive sensor network still has many difficulties; energy scarcity, non-simultaneity of energy reception and data transmission and inefficiency in data transmission occurring at sensor nodes. Considering such practical constraints, in this paper, we propose an elementary MAC scheme supporting many sensor nodes to deliver packets to a sink node. Based on a time structure in which a charging interval for charging capacitors by using received and an acting interval for communicating with a sink node are alternately repeated, the proposed MAC scheme delivers packets to a sink node according to slotted ALOHA. In general, a contention-type scheme tends to exhibit relatively low throughput. Thus, we multilaterally evaluate the throughput performance achieved by the proposed MAC scheme using a simulation method. Simulation results show that the network-wide throughput performance can be enhanced by properly setting the length of acting interval.

Indoor Passive Location Tracking and Activity Monitoring using WSN for Ubiquitous Healthcare

  • Singh, Vinay Kumar;Lee, Seung-Chul;Lim, Hyo-Taek;Myllyla, Risto;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.382-388
    • /
    • 2007
  • Indoor location system using wireless sensor network technology was applied for the status evaluation and activity monitoring of elderly person or chronic invalid at home. Location awareness application is transparent to the daily activities, while providing the embedded computing infrastructure with an awareness of what is happening in this space. To locate an object, the active ceiling-mounted reference beacons were placed throughout the building. Reference beacons periodically publish location information on RF and ultrasonic signals to allow application running on mobile or static nodes to study and determine their physical location. Once object-carried passive listener receives the information, it subsequently determines it's location from reference beacons. By using only the sensor nodes without any external network infrastructure the cost of the system was reduced while the accuracy in our experiments. was fairly good and fine grained between 7 and 15 cm for location awareness in indoor environments. Passive architecture used here provides the security of the user privacy while at the server the privacy was secured by providing the authentication using Geopriv approach. This information from sensor nodes is further forwarded to base station where further computation is performed to determine the current position of object and several applications are enabled for context awareness.

A wireless sensor network approach to enable location awareness in ubiquitous healthcare applications

  • Singh, Vinay Kumar;Lim, Hyo-Taek;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.277-285
    • /
    • 2007
  • In this paper, we outline the research issues that we are pursuing towards building of location aware environments for mainly ubiquitous healthcare applications. Such location aware application can provide what is happening in this space. To locate an object, such as patient or elderly person, the active ceiling-mounted reference beacons were placed throughout the building. Reference beacons periodically publish location information on RF and ultrasonic signals to allow application running on mobile or static nodes to study and determine their physical location. Once object-carried passive listener receives the information, it subsequently determines it's location from reference beacons. The cost of the system was reduced while the accuracy in our experiments was fairly good and fine grained between 7 and 12 cm for location awareness in indoor environments by using only the sensor nodes and wireless sensor network technology. Passive architecture used here provides the security of the user privacy while at the server the privacy was secured by providing the authentication using Geopriv approach. This information from sensor nodes is further forwarded to base station where further computation is performed to determine the current position of object.

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.