• 제목/요약/키워드: passive range

검색결과 733건 처리시간 0.024초

다중대역-디지탈 수동혼변조왜곡 측정시스템 개발 (Implementation of MultiBand-Digital Passive InterModulation Distortion Measurement System)

  • 박기원;신동환;이영철
    • 한국전자통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.1193-1200
    • /
    • 2016
  • 본 논문에서는 광대역 특성을 갖는 이동통신 RF 모듈의 수동혼변조왜곡신호를 측정할 수 있는 시스템을 개발하였다. 광대역 특성을 나타내기 위하여 RF 수신단에서 저 잡음 특성과 광대역 특성을 만족하는 수신기를 설계하였으며 RF 수신 단에서 넓은 동적영역(high dynamic range)을 나타내도록 하였다. 설계된 수동혼변조왜곡 측정시스템에서 FPGA/DSP를 적용하여 측정된 PIMD신호를 PC에 기록하도록 프로그램 하였다. 650MHz-2700MHz 까지 가변하여 PIMD3를 측정하여 최고 -138dBc를 나타내었다.

Impact of Booster Section Length on the Performance of Linear Cavity Brillouin-Erbium Fiber Laser

  • Al-Mashhadani, Thamer Fahad;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Abdullah, Fairuz;Abbas, Abdulla Khudair
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.162-166
    • /
    • 2014
  • The impact of booster section length made from passive erbium-doped fiber (EDF) on the L-band multiwavelength Brillouin-Erbium fiber laser (MBEFL) is studied experimentally in this paper. The influence on the performance of MBEFL in term of number of generated Stokes lines, tuning range and lasing threshold were investigated. A comparison was made between MBEFL without a booster section and with booster sections of different lengths. Through comparative study and at fixed BP power and 100mW of 1480 pump power, longer passive EDF length of 5m exhibits the highest average number of Stokes lines of 23 with tuning range of 14nm. In contrast, shorter passive EDF length of 1m shows the highest tuning range of 17nm and an average number of 21 Stokes lines.

압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기 (A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves)

  • 도일;조영호
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

Direct numerical simulation of passive scalar in decaying compressible turbulence

  • Li Xinliang;Fu Dexun;Ma Yanwen
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.39-41
    • /
    • 2003
  • n this paper, direct numerical simulation of decaying compressible turbulence with passive scalar is performed by using 7th order upwind difference scheme or 8th order group velocity control scheme. The start Reynolds number (defined by Taylor scale) is 72 and turbulent Mach numbers are 0.2-0.9. The Schmidt numbers of passive scalar are 2-10. The Batchelor k-1 range are found in scalar spectra, and the high wavenumber spectra decays faster with increasing turbulent Mach number. The extend self-similarity (ESS) is found in the passive scalar in compressible turbulence.

  • PDF

잠수함 선배열소나의 허위표적 정보를 이용한 표적의 거리추정 기법 (Target Range Estimation Method using Ghost Target in the Submarine Linear Array Sonar)

  • 최병웅;김규백
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.532-537
    • /
    • 2015
  • In this paper, we propose target range estimation method using ghost target in the submarine linear array sonar. Usually, when submarine detect target, they use passive sonar detection to avoid self-disclosure by active sonar transmission. But, originally, passive linear array sonar have limitation for target range estimation and additional processing is required to get target range information. For the case of near-field target, typical range estimation method is using multiple information by multipath effect in underwater environment. Acoustic signal generated from target are propagated along with numerous multipath in underwater environment. Since multipath target signals received in the linear array sonar have different conic angles each other, ghost target is appeared at the bearing different with real target bearing and sonar operator can find these information on the operation console. Under several assumption, this geometric properties can be analysed mathematically and we get the target range by derivation of this geometric equations using measured conic angles of real target and ghost target.

Effect of 1Hz Motor Nerve Electrical Stimulation on Joint Range of Motion

  • Jong Ho Kang
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.409-413
    • /
    • 2022
  • Objective: This study aims to compare the range of motion of the joints by applying the contraction and relaxation techniques used in manual therapy as electrical stimulation treatment. Based on this, we would like to propose the possibility of using motor nerve electrical stimulation therapy for musculoskeletal physical therapy. Design: Single-arm interventional study Methods: Active and passive straight leg raising tests were performed on 20 healthy men and women in their 20s to measure the angle of hip joint flexion. Then, the electrical stimulation time was set to 10 seconds and 5 seconds of rest, and motor nerve electrical stimulation of 1 Hz was applied with the maximum strength that could withstand the hamstring muscles for 10 minutes. After electrical stimulation, straight leg raising tests again to confirm the range of motion of the hip joint flexion. Results: As a result of this study, it was confirmed that the joint range of motion was significantly improved for both active and passive straight leg raising tests after application of motor nerve electrical stimulation(p<.05). Conclusions: With a strong electrical stimulation treatment of 1 Hz, the effect similar to the contraction and relaxation technique used in manual therapy was confirmed through the joint range of motion. In the future, motor nerve electrical stimulation therapy can be used for musculoskeletal physical therapy to provide a new approach for patients with reduced pain and joint range of motion due to muscle tension.

슬관절전치환술 후 연속수동운동(CPM)과 연속능동운동(CAM) 적용이 관절 고유수용감각에 미치는 영향 (The Effect of Continuous Passive Motion and Continuous Active Motion on Joint Proprioception After Total Knee Replacement)

  • 양진모;김선엽
    • 대한물리치료과학회지
    • /
    • 제17권1_2호
    • /
    • pp.41-52
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the effects of continuous passive motion(CPM) and continuous active motion(CAM) on proprioception of the knee after total knee replacement(TKR). Methods: Twenty patients with TKR were randomly allocated into two groups, the CPM group(n=10) and the CAM group(n=10). All subjects were evaluated for levels of pain, passive range of motion and angle reproduction of the knee. An angle reproduction test was used to assess the proprioceptive deficit. Two types of angle reproduction test were used: a passive angle reproduction(PAR) test and an active angle reproduction(AAR) test. The relevant examinations were performed before and after intervention(on the 5th day and the 10th day). The statistical significance were calculated using a t-test and a one-way repeated ANOVA. Results: A pre-intervention significant difference was not found between the two groups. Significantly better results were before and after the intervention at 10 days, for the PAR(flexion direction) test; however, only in the CAM group. There were no significant difference, either before or after the intervention, for the AAR test(flexion and extension direction) in both group. Both groups experienced similar levels of pain and passive range of knee motion before and after the intervention. Conclusion: This study revealed that CAM was a better effect to restore position sense of the knee joint after TKR.

  • PDF

Passive earth pressure for retaining structure considering unsaturation and change of effective unit weight of backfill

  • Zheng, Li;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.207-215
    • /
    • 2020
  • This paper presents a kinematic limit analysis for passive earth pressure of rigid retaining structures considering the unsaturation of the backfill. Particular emphasis in the current work is focused on the effects of the spatial change in the degree of saturation on the passive earth pressure under different steady-infiltration/evaporation conditions. The incorporation of change of effective unit weight with degree of saturation is the main contribution of this study. The problem is formulated based on the log-spiral failure model rather than the linear wedge failure model, in which both the spatial variations of suction and soil effective unit weight are taken into account. Parametric studies, which cover a wide range of flow conditions, soil types and properties, wall batter, back slope angle as well as the interface friction angle, are performed to investigate the effects of these factors on the passive pressure and the corresponding shape of potential failure surfaces in the backfill. The results reveal that the flow conditions have significant effects on the suction and unit weight of the clayey backfill, and hence greatly impact the passive earth pressure of retaining structures. It is expected that present study could provide an insight into evaluation of the passive earth pressure of retaining structures with unsaturated backfills.

Vibration control laws via shunted piezoelectric transducers: A review

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.1-19
    • /
    • 2014
  • Attaching a piezoelectric transducer to a vibrating structure, and shunting it with an electric circuit, gives rise to different passive, semi-passive, and semi-active control techniques. This paper attempts to review the research related to structural vibration control, via passive, semi-passive, and semi-active control methods. First, the existing electromechanical modeling is reviewed, along with the modeling methods. These range from lumped parameters, to distributed parameters modeling of piezostructural systems shunted by electrical networks. Vibration control laws are then discussed, covering passive, semi-passive, and semi-active control techniques, which are classified according to whether external power is supplied to the piezoelectric transducers, or not. Emphasis is placed on recent articles covering semi-passive and semi-active control techniques, based upon switched shunt circuits. This review provides the necessary background material for researchers interested in the growing field of vibration damping and control, via shunted piezostructural systems.

Passive shape control of force-induced harmonic lateral vibrations for laminated piezoelastic Bernoulli-Euler beams-theory and practical relevance

  • Schoeftner, J.;Irschik, H.
    • Smart Structures and Systems
    • /
    • 제7권5호
    • /
    • pp.417-432
    • /
    • 2011
  • The present paper is devoted to vibration canceling and shape control of piezoelastic slender beams. Taking into account the presence of electric networks, an extended electromechanically coupled Bernoulli-Euler beam theory for passive piezoelectric composite structures is shortly introduced in the first part of our contribution. The second part of the paper deals with the concept of passive shape control of beams using shaped piezoelectric layers and tuned inductive networks. It is shown that an impedance matching and a shaping condition must be fulfilled in order to perfectly cancel vibrations due to an arbitrary harmonic load for a specific frequency. As a main result of the present paper, the correctness of the theory of passive shape control is demonstrated for a harmonically excited piezoelelastic cantilever by a finite element calculation based on one-dimensional Bernoulli-Euler beam elements, as well as by the commercial finite element code of ANSYS using three-dimensional solid elements. Finally, an outlook for the practical importance of the passive shape control concept is given: It is shown that harmonic vibrations of a beam with properly shaped layers according to the presented passive shape control theory, which are attached to an resistor-inductive circuit (RL-circuit), can be significantly reduced over a large frequency range compared to a beam with uniformly distributed piezoelectric layers.