• Title/Summary/Keyword: passive flow control

Search Result 127, Processing Time 0.024 seconds

Passive Control of the Impulse Wave Using a Helical Vane (Helical Vane 을 이용한 펄스파의 피동제어)

  • Yang, Soo-Young;Lee, Dong-Hoon;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.792-797
    • /
    • 2003
  • A helical vane is applied to reduce the magnitude of the impulse wave discharged from the exit of a duct. A shock tube with an open end is used to investigate the effect of the helical vanes on the impulse wave magnitude. Four different types of helical vanes are installed into the low-pressure tube of shock tube. The magnitude of the incident shock wave is varied below 1.25, and the magnitude of impulse wave is measured using a pressure transducer mounted on a wedge probe. Instant images of the impulse wave are obtained by means of the Schlieren optical method. The present experimental results show that the helical vane considerably reduces the magnitude of the impulse wave and the vane effects are more remarkable for stronger incident shock wave.

  • PDF

Analytical Study on the Oscillating Flow Effect in a Anode Channel of Direct Methanol Fuel Cells (연료극 왕복유동이 직접 메탄올 연료전지에 미치는 영향에 대한 해석적 연구)

  • Hwang, Yong-Sheen;Lee, Dae-Young;Kim, Seo-Young;Choi, Hoon;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • This study considers the feasibility of the concentration control of the methanol solution by oscillating flow in the anode channel of passive type Direct Methanol Fuel Cells(DMFC). DMFC stack performance is largely influenced by the fuel concentration. If the fuel concentration is either lower than 0.5M or more than 2M, its performance deteriorates seriously because of the fuel starvation or the fuel crossover. In this respect the optimization of the fuel concentration is crucially important to maximize the DMFC stack performance. In this work, the effects of oscillating actuation in the fuel supply are studied to control the fuel concentration. Two important nondimensional parameters are introduced, each of which represents either the oscillating frequency or the oscillating amplitude. It is shown how these factors affect the stack performance and the efficiency of the DMFC stack.

  • PDF

Large Capacity Passive Flow Control Vortex Valve (대용량 피동형 유량제어 와류 밸브)

  • Choi, N. H.;Chu, I.-C.;Chung, C. H.;Cho, B. H.;Song, C.-H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.635-640
    • /
    • 2004
  • The present paper provides the design specifications and working principle of flow controlling vortex valve which will be adopted in a Korean next generation reactor (APR1400). The vortex valve is installed inside the pressurized safety injection tank of APR1400, and it passively controls the water discharge flowrate from the tank. In the present study, the performance of the vortex valve have been evaluated throughout the repeated experiments in the full-scale test facility called VAPER(VAlve Performance Evaluation Rig). Based on the experimental results, it is confirmed that the currently developed vortex valve satisfies the major performance requirements of APR1400 plant design in view of the peak discharge flowrate, pressure loss coefficient, and total discharge duration time. To achieve the highest quality of the experimental results, a quality assurance program for vortex valve tests has been strictly applied.

  • PDF

CFD Simulation of NACA 2412 airfoil with new cavity shapes

  • Merryisha, Samuel;Rajendran, Parvathy;Khan, Sher Afghan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.131-148
    • /
    • 2022
  • The paper presents the surface-modified NACA 2412 airfoil performance with variable cavity characteristics such as size, shape and orientation, by numerically investigated with the pre-validation study. The study attempts to improve the airfoil aerodynamic performance at 30 m/s with a variable angle of attack (AOA) ranging from 0° to 20° under Reynolds number (Re) 4.4×105. Through passive surface control techniques, a boundary layer control strategy has been enhanced to improve flow performance. An intense background survey has been carried out over the modifier orientation, shape, and numbers to differentiate the sub-critical and post-critical flow regimes. The wall-bounded flows along with its governing equations are investigated using Reynolds Average Navier Strokes (RANS) solver coupled with one-equational transport Spalart Allmaras model. It was observed that the aerodynamic efficiency of cavity airfoil had been improved by enhancing maximum lift to drag ratio ((l/d) max) with delayed flow separation by keeping the flow attached beyond 0.25C even at a higher angle of attack. Detailed investigation on the cavity distribution pattern reveals that cavity depth and width are essential in degrading the early flow separation characteristics. In this study, overall general performance comparison, all the cavity airfoil models have delayed stalling compared to the original airfoil.

Dynamic Characterization of Passive Flow-Rate Regulator Using Pressure-Dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기의 동적특성 평가)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.825-829
    • /
    • 2011
  • We performed a dynamic characterization of passive flow-rate regulators, which compensate for inlet pressure variation and maintain a constant flow rate for precise liquid control in microfluidic systems. To measure the flow rate for a short time, much less than the period of the dynamic inlet pressure, we use the particle image velocimetry (PIV) method. DI water containing fluorescent beads with a $0.7-{\mu}m$ diameter was supplied to the flow-rate regulators, and two successive images of the particles were taken by a pulse laser and a fluorescent microscope to measure the flow velocity. For a dynamic inlet pressure of frequency 60 Hz, the flow velocity was constant with an average of 0.194 ${\pm}$ 0.014 m/s as the inlet pressure varied between 20 kPa to 50 kPa. The flow-rate regulators provided a constant flow rate of $5.82{\pm}0.29\;{\mu}l/s$ in the frequency range of the inlet pressure from 1 Hz to 60 Hz.

Numerical Analysis of KSR-III Main Propulsion System Feedlines (KSR-III 추진기관 추진제 공급배관 수치해석)

  • Cho, In-Hyun;Oh, Seung-Hyub;Kang, Sun-Il;Kim, Yong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.276-281
    • /
    • 2001
  • The KSR-III Main Propulsion System configuration of the liquid oxygen (LOX) feed line is analyzed. This feed line includes a tighter radius and cavitation venturi for flow mass flow-rate passive control. There were concerns that these configurations might generate a great flow distortion at the engine interface. Also both the pressure drop at the feed line and any presence of separation area are a great concern according to the propellant flow. To resolve these issues, a computational fluid dynamic analysis was conducted to determine the flow field in the LOX feed lines.

  • PDF

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol;Lee, Yong-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.327-330
    • /
    • 2006
  • Numerical study on the passive control of the oblique shock wave/turbulent boundary-layer interaction control utilizing slotted plates over a cavity has been carried out. Numerical results have been compared with the experimental observations, such as pitot/wall surface pressures and Schlieren flow visualizations, obtained for the same boundary conditions. It was found that the present numerical results shows a good agreement with experimental data. Further, the effect of different slot configurations including various number, location and angle of slots on the characteristics of the interactions are also tested, focusing on the variation of the piot pressure and the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through cavity.

  • PDF

Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach

  • Conesa, Fernando Roca;Liem, Rhea Patricia
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.309-333
    • /
    • 2020
  • The proposed study aims to numerically investigate the performance of hydrofoils in the context of amphibious aircraft application. In particular, we also study the effectiveness of a slotted hydrofoil in minimizing the cavitation phenomenon, to improve the overall water take-off performance of an amphibious aircraft. We use the ICON A5 as a base model for this study. First, we propose an approach to estimate the required hydrofoil surface area and to select the most suitable airfoil shape that can minimize cavitation, thus improving the hydrodynamic efficiency. Once the hydrofoil is selected, we perform 2D numerical studies of the hydrodynamic and cavitating characteristics of a non-slotted hydrofoil on ANSYS Fluent. In this work, we also propose to use a slotted hydrofoil to be a passive method to control the cavitation performance through the boundary layer control. Numerical results of several slotted configurations demonstrate notable improvement on the cavitation performance. We then perform a multiobjective optimization with a response surface model to simultaneously minimize the cavitation and maximize the hydrodynamic efficiency of the hydrofoil. The optimization takes the slot geometry, including the slot angle and lengths, as the design variables. In addition, a global sensitivity study has been carried and it shows that the slot widths are the more dominant factors.

Computational Study of the Passive Control of the Oblique-Shock-Interaction Flows (경사충격파 간섭유동의 피동제어에 관한 수치해석적 연구)

  • Chang, Sung-Ha;Lee, Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.18-25
    • /
    • 2007
  • Computational study on the passive control of the oblique shock-wave/turbulent boundary-layer interaction utilizing slotted plates over a cavity has been carried out. The numerical boundary layer profile upstream of the interaction follows the compressible turbulent boundary-layer theory reasonably well, and the other results also show good agreements with the experimental observations, such as the wall surface pressures and Schlieren flow visualizations. Further, the effects of various slot configuration including number, location and angle of the slots on the characteristics of the interactions, such as the variation of the total pressures, the boundary-layer characteristics downstream of the interaction and the recirculating mass flux through the slots, are also tested and compared.

Numerical Study on the Effect of Cavity Vanes to Control the Axial Thrust of a Turbopump (터보펌프 축추력 조절용 캐비티 베인에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Kim, Jin-Han;Noh, Jun-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.39-43
    • /
    • 2006
  • The magnitude of the axial force acting on turbopump bearings has a great influence on the operational reliability and service life of a turbopump. In the turbopump under current investigation the cavity vanes are introduced to the pump shroud casing to control the axial thrust of the turbopump. To investigate the effect of the cavity vanes, 3D computational flow analyses for a propellant pump stage including an inducer, impeller, volute and secondary flow passages are performed with and without the vanes. The results show that the cavity vanes are very effective in reducing the magnitude of axial thrust without notable changes on the overall performance of the turbopump.