• Title/Summary/Keyword: passive control systems

Search Result 463, Processing Time 0.053 seconds

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

A Study of Passive Magnetic Device based on BIM for the Vibration Conrol of Structures (BIM기반의 구조물 진동제어를 위한 Passive Magnetic Device 개발에 관한 연구)

  • Koo, Sun-Mo;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Structural members are designed to maintain the load-carrying capacity as well as structural strength, and the structural serviceability such as the deflection, cracks, and vibration to give the occupants uncomfortable environment should be checked. Recently, the importance of the vibration has been issued since the Techno Mart accident due to vibration resonance. This study provides a passive vibration control system using the repulsion force of magnets to reduce dynamic vibrations. The systems is devised by importing the constraint condition by a hinge to operate magnets installed at two adjacent locations. The effectiveness of the proposed system is investigated by the vibration control test of a steel beam with and without the control system. It is illustrated in the test that the system is activated by the control forces executed by the magnets and can be utilized in reducing the dynamic responses. The system can be applied to pedestrian bridge and traffic bridge. The applicability is expected in the future by optimizing the factors to affect the dynamic responses like the intensity, mass, locations of magnets.

Studies on vibration control effects of a semi-active impact damper for seismically excited nonlinear building

  • Lu, Zheng;Zhang, Hengrui;Masri, Sami F.
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.95-110
    • /
    • 2019
  • The semi-active impact damper (SAID) is proposed to improve the damping efficiency of traditional passive impact dampers. In order to investigate its damping mechanism and vibration control effects on realistic engineering structures, a 20-story nonlinear benchmark building is used as the main structure. The studies on system parameters, including the mass ratio, damping ratio, rigid coefficient, and the intensity of excitation are carried out, and their effects both on linear and nonlinear indexes are evaluated. The damping mechanism is herein further investigated and some suggestions for the design in high-rise buildings are also proposed. To validate the superiority of SAID, an optimal passive particle impact damper ($PID_{opt}$) is also investigated as a control group, in which the parameters of the SAID remain the same, and the optimal parameters of the $PID_{opt}$ are designed by differential evolution algorithm based on a reduced-order model. The numerical simulation shows that the SAID has better control effects than that of the optimized passive particle impact damper, not only for linear indexes (e.g., root mean square response), but also for nonlinear indexes (e.g., component energy consumption and hinge joint curvature).

Passive Shock Control in Transonic Flow Field

  • Matsuo S.;Tanaka M.;Setoguchi T.;Kashimura H.;Yasunobu T.;Kim H. D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.187-188
    • /
    • 2003
  • In order to control the transonic flow field with shock wave, a condensing flow was produced by an expansion of moist air on a circular bump model and shock waves were occurred in the supersonic parts of the fields. Furthermore, the additional passive technique of shock - boundary layer interaction using the porous wall with a cavity underneath was adopted in this flow field. The effects of these methods on the shock wave characteristics were investigated numerically. The result showed that the flow fields might be effectively controlled by the suitable combination between non-equilibrium condensation and the position of porous wall.

  • PDF

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Compliance Analysis and Vibration Control of the Safe Arm with MR-based Passive Compliant Joints

  • Yun, Seung-Kook;Yoon, Seong-Sik;Kang, Sung-Chul;Yeo, In-Teak;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2010-2015
    • /
    • 2003
  • In this paper, a design and control of the safe arm with passive compliant joints(PCJ) is presented. Each PCJ has a magneto- rheological damper and maximum 6 springs. Compliance analysis in Cartesian space is performed with the compliance ellipsoid; this analysis shows a map between compliance in the joint space and compliance in Cartesian space. Vibration control of the arm using an input shaping technique is also presented; the results of a simulation and an experiment prove that a fast motion of the safe arm without residual vibration can be performed.

  • PDF

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

Passive RFID Based Mobile Robot Localization and Effective Floor Tag Arrangement (수동 RFID 기반 이동로봇 위치 추정 및 효율적 노면 태그 배치)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1294-1301
    • /
    • 2008
  • Under passive RFID environment, this paper presents a new localization of a mobile robot traversing over the floor covered with tags, which is superior to existing methods in terms of estimation performance and cost effectiveness. Basically, it is assumed that a mobile robot is traveling along a series of straight line segments, each segment at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, for a given line segment with known starting point, the velocity and position of a mobile robot is estimated using the spatial and temporal information acquired from the traversed tag. Some discussions are made on the validity of the basic assumptions and the localization for the initial segment with unknown starting point. Second, for a given tag distribution density, the optimal tag arrangement is considered to reduce the position estimation error as well as to make easy the tag attachment on the floor. After reviewing typical tag arrangements, the pseudorandom tag arrangement is devised inspired from the Sudoku puzzle, a number placement puzzle. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

Problems and improvement methods of passive treatment systems for acid mine drainage in Korea

  • Ji, Sang-Woo;Ko, Ju-In;Kim, Sun-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.504-510
    • /
    • 2003
  • This study has been carried out to evaluate the passive treatment systems for acid mine drainage in Korea and to suggest, if possible, the method for the improvement. 35 passive treatment systems in 27 mines have been constructed since 1996. SAPS, being the main process, was combined with more than one of processes such as anaerobic wetland, aerobic wetland, and oxidation pond for the construction of passive treatment system. Problems observed during the operation include the poor sulfate removal ratio, overflow, leakage, unusabless of the whole system, and inefficiency. The reasons of the poor sulfate removal ratio are believed that the low temperature during the winter prohibits the SRB activity and HRT for bacterial sulfate reduction is insufficient. An alternative method In Adit Sulfate Reducing System which enables to keep the temperature constant at about $15^{\circ}C$ was suggested. IASRS is the methods of placing the SAPS inside the adit, which enables the temperature around the system constant can be maintained. The experiments using the laboratory scaled model systems made up of four sections showed high efficiencies in pH control and metal removal ratios, but showed still low sulfate removal ratio of about $23\%$ also with high COD at the beginning of the operation.

  • PDF

Passive Control of the Condensation Shock Wave Using Bleed Slots

  • Kim, H.D.;Lee, K.H.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.299-304
    • /
    • 2001
  • The current study describes experimental and computational work on the passive control of the steady and unsteady condensation shock waves, which are generated in a transonic nozzle. The bleed slots are installed on the contoured wall of the transonic nozzle in order to control the magnitude of the condensation shock wave and its oscillations. For computations, a droplet growth equation is incorporated into the two-dimensional Navier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order tractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. An experiment using an indraft transonic wind tunnel is made to validate the computational results. The current computations represented well the experimental flows. From both the experimental and computational results it is found that the magnitude of the condensation shock wave in the bleed slotted nozzle is significantly reduced, compared with no passive control of solid wall. The oscillations of the condensation shock wave are successfully suppressed by a bleed slot system.

  • PDF