• 제목/요약/키워드: passive control systems

검색결과 465건 처리시간 0.033초

최소침습수술을 위한 복강경 매니퓰레이터 제어 (Laparoscope Manipulator Control for Minimally Invasive Surgery)

  • 김수현;김광기;조영호
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구 (A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles)

  • 권성진
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템 (Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge)

  • 박규식;정형조;최강민;이종헌;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications

  • Jung, H.J.;Spencer, B.F. Jr.;Ni, Y.Q.;Lee, I.W.
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.493-526
    • /
    • 2004
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since this unique semiactive device was first introduced to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of dynamic models of MR fluid dampers for describing their complex dynamic behavior and control algorithms considering the characteristics of MR fluid dampers. This extensive review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

Experimental and numerical study on the dynamic behavior of a semi-active impact damper

  • Zheng Lu;Mengyao Zhou;Jiawei Zhang;Zhikuang Huang;Sami F. Masri
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.455-467
    • /
    • 2023
  • Impact damper is a passive damping system that controls undesirable vibration with mass block impacting with stops fixed to the excited structure, introducing momentum exchange and energy dissipation. However, harmful momentum exchange may occur in the random excitation increasing structural response. Based on the mechanism of impact damping system, a semi-active impact damper (SAID) with controllable impact timing as well as a semi-active control strategy is proposed to enhance the seismic performance of engineering structures in this paper. Comparative experimental studies were conducted to investigate the damping performances of the passive impact damper and SAID. The extreme working conditions for SAID were also discussed and approaches to enhance the damping effect under high-intensity excitations were proposed. A numerical simulation model of SAID attached to a frame structure was established to further explore the damping mechanism. The experimental and numerical results show that the SAID has better control effect than the traditional passive impact damper and can effectively broaden the damping frequency band. The parametric studies illustrate the mass ratio and impact damping ratio of SAID can significantly influence the vibration control effect by affecting the impact force.

케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가 (Experimental Verification of Semiactive Control Systems for Stay Cable Vibration)

  • 장지은;정형조;정운;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF

Intervening Firing Method and Passive Filter Design for Harmonic Elimination and Reactive Power Compensation in Three-Phase Thyristor Phase-Controlled Converters Supplying a DC Motor

  • Pattanapongchai, Artite;Wongtongdee, Surached W.;Laohasongkram, Piphat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.813-816
    • /
    • 2005
  • This paper presents a method for harmonic elimination and reactive power compensation using an intervening firing method and passive power filter with is suitable to compensate rapidly changing loads and reactive power. The proliferation of three-phase thyristor phase-controlled converter of DC motor drives into a power system has the potential to increase the harmonic levels in the power system. The design procedure of an intervening firing method and passive power filter capable of reducing the voltage and current harmonics produced by converter supplied from a source having internal large inductive impedance is offered. The analysis uses the or CAD PSpice to model three-phase thyristor phase-controlled converter of DC motor drives as well as the system.

  • PDF

Three-Phase Hybrid Shunt Filters for Power Quality Improvement

  • Bhuvaneswari, G.;G.Nair, Manjula
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.257-264
    • /
    • 2007
  • Active power filters can be cost-effective for use in practical systems with the insertion of a few passive elements in shunt or series configuration. The resulting hybrid filters can be designed to provide dominant lower order harmonic elimination and reactive power support by the passive elements so that the burden on the active filter counterpart is reduced. In this paper, the rate reduction in the shunt active filter is estimated when it is connected in parallel with suitable passive tuned harmonic filters. The active filtering system is based on an appropriate control scheme. The simulation and the experimental results of the shunt active filter, along with the estimated value of reduction in rating, show that the hybrid shunt filtering system is quite effective in compensating for the harmonics and reactive power, in addition to being cost-effective.

Stairs Adaptable Wheeled Mobile Robotusing Passive Linkage Mechanism

  • Woo, Chun-Kyu;Kim, Soo-Hyun;Kwak, Yoon-Keun;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.30.3-30
    • /
    • 2001
  • In this paper, we designed the 6-wheeled mobile robot (6-WMR) with the passive linkage mechanism which enables 6-WMR to passively adapt to the given stairs. To overcome the limit of adaptability to the terrain of conventional WMR and improve the energy efficiency, we proposed the new WMR using the passive linkage mechanism. The passive linkage mechanism consists of the simple four-bar linkage mechanism which allows 6-WMR to climb stairs with adaptability and an additional link which is connected to the four-bar linkage mechanism by a pin-slot joint to enable 6-WMR to passively go up the stairs. We made a miniature model of the proposed 6-WMR ...

  • PDF

초기 유도용 수동추적 필터 (A passive tracking filter in a capture guidance mode)

  • 엄태윤;안조영;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.99-104
    • /
    • 1989
  • A practical filter is suggested for ground-Dasea missile tracking in a capture guidance mode, utilizing angle-only measurements from a passive sensor and its performance is evaluated by a realistic system simulation study. Also suggested is a missile acceleration model that provides inputs to the filter. The suggested filter has a decoupled structure of independent azimuth and elevation channels with efficiency in commutation time and memory requirements.

  • PDF