• Title/Summary/Keyword: passive control, structural control

Search Result 239, Processing Time 0.025 seconds

Position/Force Control of Constrained Flexible Manipulators Using Structural Compliance Modeling (구조적 컴플라이언스 모델링을 이용한 구속받는 유연 매니퓰레이터의 위치/힘 제어)

  • Kim, Jin-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.114-119
    • /
    • 2002
  • The aim of this paper is to clarify the structural compliance of the constrained flexible manipulator and to develop the force control algorithm by using the compliance of the links. The proposed structural compliance control consists of the position control to utilize a flexible manipulator model (considering the compensation for the elastic deflection of links) and the passive force control to utilize the rigid manipulator model (without considering the compensation for the elastic deflection of links). We present the experimental results for the case when applying the only position control, and when applying the structural compliance control. Finally, a comparison between these results is presented to show the performance of our method.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy (복합제어기법을 이용한 지진하중을 받는 사장교의 제어)

  • 박규식;정형조;이종헌;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.338-345
    • /
    • 2002
  • This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Lead rubber bearings and ideal hydraulic actuators are used fur the passive and active control systems. Bouc-Wen model is used to simulate the nonlinear behavior of lead rubber bearings and an H₂/LQG control algorithm is adopted as an active control algorithm. Numerical simulation results show that the performance of the proposed hybrid control strategy is superior to that of the passive control strategy and slightly better than that of the active control strategy. The proposed control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

  • PDF

Genetic Algorithm and Goal Programming Technique for Simultaneous Optimal Design of Structural Control System (구조-제어시스템의 동시최적설계를 위한 유전자알고리즘 및 Goal Programming 기법)

  • 옥승용;박관순;고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.497-504
    • /
    • 2003
  • An optimal design method for hybrid structural control system of building structures subject to earthquake excitation is presented in this paper. Designing a hybrid structural control system nay be defined as a process that optimizes the capacities and configuration of passive and active control systems as well as structural members. The optimal design proceeds by formulating the optimization problem via a multi-stage goal programming technique and, then, by finding reasonable solution to the optimization problem by means of a goal-updating genetic algorithm. The process of the integrated optimization design is illustrated by a numerical simulation of a nine-story building structure subject to earthquake excitation. The effectiveness of the proposed method is demonstrated by comparing the optimally designed results with those of a hybrid structural control system where structural members, passive and active control systems are uniformly distributed.

  • PDF

A Study of Passive Magnetic Device based on BIM for the Vibration Conrol of Structures (BIM기반의 구조물 진동제어를 위한 Passive Magnetic Device 개발에 관한 연구)

  • Koo, Sun-Mo;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.6 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Structural members are designed to maintain the load-carrying capacity as well as structural strength, and the structural serviceability such as the deflection, cracks, and vibration to give the occupants uncomfortable environment should be checked. Recently, the importance of the vibration has been issued since the Techno Mart accident due to vibration resonance. This study provides a passive vibration control system using the repulsion force of magnets to reduce dynamic vibrations. The systems is devised by importing the constraint condition by a hinge to operate magnets installed at two adjacent locations. The effectiveness of the proposed system is investigated by the vibration control test of a steel beam with and without the control system. It is illustrated in the test that the system is activated by the control forces executed by the magnets and can be utilized in reducing the dynamic responses. The system can be applied to pedestrian bridge and traffic bridge. The applicability is expected in the future by optimizing the factors to affect the dynamic responses like the intensity, mass, locations of magnets.

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

Performance comparison of passive control schemes for the numerically improved ASCE cable-stayed bridge model

  • Domaneschi, Marco;Martinelli, Luca
    • Earthquakes and Structures
    • /
    • v.3 no.2
    • /
    • pp.181-201
    • /
    • 2012
  • The benchmark on the ASCE cable-stayed bridge has gathered since its proposal the interest of many specialists in the field of the structural control and the dynamic response of long span bridges. Starting from the original benchmark statement in the MATLAB framework, a refined version of the bridge model is developed in the ANSYS commercial finite element environment. A passive structural control system is studied through non linear numerical analyses carried out in time domain for several seismic realizations in a multiple support framework. An innovative electro-inductive device is considered. Its positive performance is compared with an alternative version considering traditional metallic dampers.

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Efficient optimal design of passive structural control applied to isolator design

  • Kamalzare, Mahmoud;Johnson, Erik A.;Wojtkiewicz, Steven F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.847-862
    • /
    • 2015
  • Typical base isolated buildings are designed so that the superstructure remains elastic in design-level earthquakes, though the isolation layer is often quite nonlinear using, e.g., hysteretic elements such as lead-rubber bearings and friction pendulum bearings. Similarly, other well-performing structural control systems keep the structure within the linear range except during the most extreme of excitations. Design optimization of these isolators or other structural control systems requires computationally-expensive response simulations of the (mostly or fully) linear structural system with the nonlinear structural control devices. Standard nonlinear structural analysis algorithms ignore the localized nature of these nonlinearities when computing responses. This paper proposes an approach for the computationally-efficient optimal design of passive isolators by extending a methodology previously developed by the authors for accelerating the response calculation of mostly linear systems with local features (linear or nonlinear, deterministic or random). The methodology is explained and applied to a numerical example of a base isolated building with a hysteretic isolation layer. The computational efficiency of the proposed approach is shown to be significant for this simple problem, and is expected to be even more dramatic for more complex systems.