• 제목/요약/키워드: passive air sampler

검색결과 97건 처리시간 0.024초

네일샵미용실의 실내공기 중 미세먼지(PM10), 휘발성 유기화합물 (VOCs), 알데하이드류(Aldehydes)의 농도 및 업소 특성에 따른 상관성 분석 (Characteristics of PM10, VOCs and Aldehydes Levels in Nail and Hair Shops)

  • 이보람;곽수영;양원호;전상일;김정수;이기영
    • 한국환경보건학회지
    • /
    • 제43권6호
    • /
    • pp.509-515
    • /
    • 2017
  • Objectives: The purpose of this study was to assess the indoor levels of $PM_{10}$, VOCs and aldehydes in nail shop and hair salon. Methods: The field survey was conducted for 52 hair salons 52 nail shops, and 26 shop-in-shops in Seoul and Daegu city. The field technicians investigated characteristics of each shop including operating time, indoor volume, ventilation and so on. Indoor concentrations of $PM_{10}$, VOCs and aldehydes, indoor temperature and humidity were measured in 12 hair salons, 12 nail shops and 6 shop-in shops. MP Surveryor II (Graywolf, USA) was used to measure $CO_2$ concentration, temperature and humidity for 8 hours. $PM_{10}$ concentrations were measured by minivolume air sampler with Teflon quartz filter ($0.2{\mu}m$ pore size, ${\varphi}$ 47 mm, Graseby-Anderson TEF-DISKTM) for 6 hours. VOCs passive sampler (OVM 3500) was used to collect VOCs for 8 hours and analyzed by GC/MSD. Results: The $CO_2$ concentrations were $759.4{\pm}58.2$ ppm in nail shops, $731.0{\pm}72.5$ ppm in hair salons, and $656.4{\pm}31.2$ ppm in shop-in-shops. The $PM_{10}$ concentrations were $27.5{\pm}14.2{\mu}g/m^3$ in nail shops, $33.1{\pm}6.3{\mu}g/m^3$ in hair salons, and $39.0{\pm}26.9{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations were $3085.4{\pm}1667.8{\mu}g/m^3$ in nail shops, $2131.1{\pm}617.3{\mu}g/m^3$ in hair salons, and $1550.3{\pm}529.0{\mu}g/m^3$ in shop-in-shops. TVOCs concentrations in nail shops were significantly higher than those in hair salons and shop-in-shops (p=0.002). Formaldehyde concentrations were $60.8{\pm}36.6{\mu}g/m^3$ in nail shops, $89.1{\pm}55.4{\mu}g/m^3$ in hair salons, and $45.1{\pm}22.5{\mu}g/m^3$ in shop-in-shops. Conclusion: TVOCs concentrations in nail shop were the highest among others. TVOC concentrations in all stores exceeded indoor air quality stand of indoor air quality control in public-use facilities, etc act.

새만금 간척지 지역 공기 중 암모니아 농도의 연간 분포 (Annual Distribution of Atmospheric Ammonia Concentration in Saemangum Reclaimed Land Area)

  • 홍성창;김민욱;김진호
    • 한국환경농학회지
    • /
    • 제40권4호
    • /
    • pp.330-334
    • /
    • 2021
  • BACKGROUND: More recently, it has been shown that atmospheric ammonia (NH3) plays a primary role in the formation of secondary particulate matter by reacting with the acidic species, e.g. SO2, NOx, to form PM2.5 aerosols in the atmosphere. The Jeonbuk region is an area with high concentration of particulate matter. Due to environmental changes in the Saemangeum reclaimed land with an area of 219 km2, it is necessary to evaluate the impact of the particulate matter and atmospheric ammonia in the Jeonbuk region. METHODS AND RESULTS: Atmospheric ammonia concentrations were measured from June 2020 to May 2021 using a passive sampler and CRDS analyzer. Seasonal and annual atmospheric ammonia concentration measured using passive sampler was significantly lower in Jangjado (background concentration), and the concentration ranged from 11.4 ㎍/m3 to 18.2 ㎍/m3. Atmospheric ammonia concentrations in Buan, Gimje, Gunsan, and Wanju regions did not show a significant difference, although there was a slight seasonal difference. The maximum atmospheric ammonia concentration measured using the CRDS analyzer installed in the IAMS near the Saemangeum reclaimed land was 51.5 ㎍/m3 in autumn, 48.0 ㎍/m3 in summer, 37.6 ㎍/m3 in winter, and 32.7 ㎍/m3 in spring. The minimum concentration was 4.9 ㎍/m3 in spring, 4.2 ㎍/m3 in summer, and 3.5 ㎍/m3 in autumn and winter. The annual average concentration was 14.6 ㎍/m3. CONCLUSION(S): Long term monitoring of atmospheric ammonia in agricultural areas is required to evaluate the formation of fine particulate matter and its impact on the environment. In addition, continuous technology development is needed to reduce ammonia emitted from farmland.

서울시 도로변의 $PM3.5/NO_2$ 농도비 및 구두수선대 근로자의 노출평가 ($PM3.5/NO_2$ Concentration Ratio in Roadside and Exposure Assessment of Shoes Repairmen in Seoul)

  • 배현주;양원호;김나리;정문호
    • 환경위생공학
    • /
    • 제16권4호
    • /
    • pp.21-30
    • /
    • 2001
  • Vehicles, especially diesel-using, are a major source of airborne particulate matter(PM), nitrogen dioxide($NO_2$) and so on in metropolitan cities such as Seoul. Therefore workers, who are mainly merchants, near roadside may be highly exposed to air pollutants from exhausted emissions of vehicles. This means that occupational type and location can affect the workers'health by exposure to outdoor pollutions of ambient as well as indoor pollutions of working condition, respectively. In this study, we simultaneously measured the PM3.5 and $NO_2$concentrations in indoor and outdoor of shoes repair shops in Seoul, which were generally located at roadside in Korea. Shoes repairmen were highly exposed to PM3.5 and $NO_2$ both indoor and outdoor of repair shops comparing with other sub-population groups. High exposure to air pollutants for shoes repairmen was considered to be outdoor source from exhausted emission of vehicles and indoor source from working condition. The $PM3.5/NO_2$ concentration ratio was $1.17{\pm}$0.59 in roadside, of which ratio was higher 7han ratios of other studies. This result suggested that major air pollutant in Seoul was fine particle. Also, this PM3.5 to $NO_2$ ratio will be used in environmental exposure and risk assessment by estimation of PM3.5 concentration as measuring the only $NO_2$ concentration with small and accurate $NO_2$ passive sampler.

  • PDF

대기 중 휘발성유기오염물질의 환경, 개인 및 인체 노출의 상관성 연구 (A Correlation Study between the Environmental, Personal Exposures and Biomarkers for Volatile Organic Compounds)

  • 조성준;신동천;정용
    • Environmental Analysis Health and Toxicology
    • /
    • 제17권3호
    • /
    • pp.197-205
    • /
    • 2002
  • Volatile organic compounds (VOCs) are an important public health problem throughout the world. Many important questions remain to be addressed in assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in the analytical determination of VOCs. Personal exposure measurements are needed to evaluate the relationship between microenvironmental concentrations and actual exposures. It is also important to investigate exposure frequency, duration, and intensity, as well as personal exposure characteristics. In addition to air monitoring, biological monitoring may contribute significantly to risk assessment by allowing estimation of absorbed doses, rather than just the external exposure concentrations, which are evaluated by environmental and personal monitoring. This study was conducted to establish the analytic procedure of VOCs in air, blood, urine and exhaled breath and to evaluate the relationships among these environmental media. The subjects of this study were selected because they are occupationally exposed to high levels of VOCs. Environmental, personal, blood, urine and exhalation samples were collected. Purge & trap, thermal desorber, gas chromatography and mass selective detector were used to analyze the collected samples. Analytical procedures were validated with the“break through test”, 'quot;recovery test for storage and transportation”,“method detection limit test”and“inter-laboratory QA/QC study”. Assessment of halogenated compounds indicted that they were significantly correlated to each other (p value < 0.01). In a similar manner, aromatic compounds were also correlated, except in urine sample. Linear regression was used to evaluate the relationships between personal exposures and environmental concentrations. These relationships for aromatic and halogenated are as follows: Halogen $s_{personal}$ = 3.875+0.068Halogen $s_{environmet}$, ($R^2$= .930) Aromatic $s_{personal}$ = 34217.757-31.266Aromatic $s_{environmet}$, ($R^2$= .821) Multiple regression was used to evaluate the relationship between exposures and various exposure deter-minants including, gender, duration of employment, and smoking history. The results of the regression model-ins for halogens in blood and aromatics in urine are as follows: Halogen $s_{blood}$ = 8.181+0.246Halogen $s_{personal}$+3.975Gender ($R^2$= .925), Aromatic $s_{urine}$ = 249.565+0.135Aromatic $s_{personal}$ -5.651 D.S ($R^2$ = .735), In conclusion, we have established analytic procedures for VOC measurement in biological and environmental samples and have presented data demonstrating relationships between VOCs levels in biological media and environmental samples. Abbreviation GC/MS, Gas Chromatography/Mass Spectrometer; VOCs, Volatile Organic Compounds; OVM, Organic Vapor Monitor; TO, Toxic Organicsapor Monitor; TO, Toxic Organics.

소나무 잎을 이용한 대기 중 다이옥신/퓨란 발생원 추정 (Source Tracking of PCDD/Fs in Ambient Air Using Pine Needles)

  • 천만영;김정수;고도현
    • 한국환경보건학회지
    • /
    • 제41권1호
    • /
    • pp.49-60
    • /
    • 2015
  • Objectives: Pine needles were used as a passive air sampler (PAS) of atmospheric persistent organic pollutants (POPs). This study was performed to investigate concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) deposited on pine needles near a waste incinerator and PCDD/Fs source contributions using principal component analysis (PCA). Methods: Two-year-old pine needles were sampled at 11 points with respect to distance and wind direction from the incinerator. PCDD/Fs deposited on pine needles were analyzed with HRGC/HRMS. The source contribution of PCA was calculated with SPSS. Results: The average concentration of PCDD/Fs deposited on pine needle was 0.79 (0.27-1.76) pg TEQ/g dry, PCDDs with 0.24 (0.01-0.95) pg TEQ/g dry and PCDFs with 0.56 (0.27-0.82) pg TEQ/g dry, respectively. The average concentration fraction of PCDDs was 29.7%, that of PCDFs was 70.3%, and PCDFs were more prevalent than PCDDs. The contributions of PCDD/Fs sources were estimated as incineration at 58.3% and automobiles at 28.4%. However, a relation and regulation between PCDD/Fs concentrations deposited on pine needles and distance from incinerator or wind direction was not shown. Conclusion: It was concluded that atmospheric PCDD/Fs concentrations near an industrial complex with a waste incinerator were affected by multiple sources. However, PCDD/Fs concentrations were lower than in other inland cities with the exception of background area.

대기 중 폴리브롬화디페닐에테르의 소나무 잎, 소나무 껍질 및 토양으로의 침착 특성 (Depositional Characteristics of Atmospheric PBDEs on Pine Needles, Bark and Soil)

  • 천만영
    • 한국환경보건학회지
    • /
    • 제40권3호
    • /
    • pp.215-224
    • /
    • 2014
  • Objective: This study was carried out in order to determine the depositional characteristics of pine needles, pine bark, and soil used as a passive air sampler (PAS) for atmospheric polybrominated diphenyl ethers (PBDEs). Methods: All three media were sampled from the same site. The PBDE concentrations were analyzed by HRGC/HRMS, and the lipid contents were measured using the gravimetric method by n-hexane extraction. Results: The total PBDE concentration was the highest in soil (22,274.57 pg/g dry), followed by pine bark (20,266.39 pg/g dry), and then pine needles (7,380.22 pg/g dry). Pine needles contained the highest lipid contents (21.31 mg/g dry), whereas soil (10.01 mg/g dry), and pine bark (4.85 mg/g dry) contained less. There were poor correlations between lipid content and total PBDE concentrations in the media ($R^2$=0.8216, p=0.2814). Congeners BDE 47, 99, 183, 196, 197, 206, 207 and 209 showed peak concentrations. Among these, BDE 206, 207, and 209 are highly brominated PBDEs that exist as particulates in ambient air. They accounted for 81.2% [69.2 (pine needles) - 89.0% (tree bark)] of the concentration and therefore are noted as the main congener of the total PBDEs. Conclusions: It can therefore be concluded that for reducing error by improper sampling, the same species of media should be recommended for use as a PAS for atmospheric PBDEs due to the differences in depositional characteristics.

안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구 (Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes)

  • 박광수;김혁;유석민;노샘;박유미;석광설;김민섭;윤숙희;김영희
    • 분석과학
    • /
    • 제32권1호
    • /
    • pp.17-23
    • /
    • 2019
  • 질소산화물(NOx)은 인위적 배출원(화석연료 연소, 이동오염원, 산업배출원 등)과 자연배출원(번개, 생물기원 토양, 산불 등)으로부터 배출된다. 질소안정동위원소를 이용한 분석 기법은 배출원의 기여도 및 추적 인자로 활용되어 왔다. 본 연구는 NOx의 특성을 보기 위하여 ${\delta}^{15}N-NO_2$를 측정하였으며 배출원의 동위원소 특성을 파악하기 위하여 수행되었다. 시료채취가 용이한 Ogawa PAS를 이용하여 대기 중 가스상 질소를 포집하여 안정동위원소를 분석하였다. 도심지역 터널내부의 평균 $NO_2$ 농도는 $3808.8{\pm}2656.5ppbv$이며, ${\delta}^{15}N-NO_2$ 값은 $7.7{\pm}1.8$‰를 나타내며 일반적인 이동오염원의 값을 나타냈다. 고속도로의 이동오염원으로부터 거리에 따른 결과, 고속도로와 인접한 지점의 $NO_2$ 농도는 $965.4{\pm}125.2ppbv$이며 ${\delta}^{15}N-NO_2$$5.9{\pm}1.4$‰이었고, 1.1 km 떨어진 지점의 $NO_2$ 농도는 $372.5{\pm}95.9ppbv$이며 ${\delta}^{15}N-NO_2$$-11.5{\pm}2.9$‰로 고속도로인근의 값이 높게 나타내었다. 고속도로부터 이동오염원 기여율을 보기 위하여 binary mixing model을 수행하였으며 고속도로와 근접할수록 기여율, 농도 및 동위원소가 높게 나타나는 경향을 나타냈다.