• Title/Summary/Keyword: passenger flow

Search Result 213, Processing Time 0.022 seconds

Performance Evaluation of a Mixed-Mode Type ER Engine Mount (I);Manufacturing and Test of Engine Mount (복합모드형 ER엔진마운트의 성능평가 (I);엔진마운트의 제작 및 시험)

  • Choe, Yeong-Tae;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.370-377
    • /
    • 2000
  • This paper presents a mixed-mode type ER(electro-rheological) engine mount, and its vibration control performance for a passenger vehicle is presented. The field-dependent yield stress of a transfo rmer oil-based ER fluid is empirically distilled in both shear and flow modes. This is then incorporated with the governing equation of motion of the proposed mixed-mode(shear mode plus flow mode) type engine mount. The damping force is analyzed with respect to the intensity of the electric field and design parameters such as electrode gap. Subsequently, the ER engine mount which is equivalent to the conventional hydraulic engine mount in terms of the damping level is designed and manufactured. Both computer simulation and experimental test are undertaken in order to evaluate vibration isolation performance. In addition, this performance is compared with that of the conventional hydraulic engine mount.

Unsteady Wind Pressure Analysis on PSD Considering Subway Station Configurations (지하철 역사 형상을 고려한 PSD 비정상 풍압해석)

  • Kim, Yu-Sung;Kim, Yo-Han;Shin, Kwang-Bok;Lee, Eun-Kyu;Kim, Dong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • In this study, unsteady wind pressure analyses on platform screen door (PSD) have been conducted considering the flow intereference effects between the moving train and the configuration of subway station. The major role of PSD prevents passenger accidents, wind pressure, polluted dust and noise when the train is entering the station platform. Computational fluid dynamic method with moving gird algorithm has been adopted to accurately predict unsteady pressure levels exerted on the PSD. Closed and open type station configuration are considered. Also, wind pressure levels for passing and stopping drive motion of the entering train are presented and practically compared each other.

Analysis of aerodynamic noise at inter-coach space of high speed trains based on biomimetic analogy (생체모방공학을 적용한 고속철 차간 공간의 공력소음 연구)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.711-716
    • /
    • 2011
  • Today, high-speed trains enjoy wide acceptance as fast, convenient and environment-friendly means of transportation. However, increase in the speed of the train entails a concomitant increase in the aerodynamic noise, adversely affecting the passenger comfort. At the train speed exceeding 300 km/h, the effects of turbulent flows and vortex sheddding are greatly amplified, contributing to a significant increase in the aerodynamic noise. Drawing a biomimetic analogy from low-noise flight of owl, a method to reduce aerodynamic noise at inter-coach space of high-speed trains is investigated. The proposed method attempts to achieve the noise reduction by modifying the turbulent flow and vortex shedding characteristics at the inter-coach space. To determine the aerodynamic noise at various train speeds, wind tunnel testing and numerical CFD (Computational Fluid Dynamics) simulation for the basic inter-coach spacing model are carried out, and their results compared. The simulation and experimental results reveal that there are discrete frequency components associated with turbulent air flow at constant intervals in the frequency domain

  • PDF

Intra-regional Cooperation and Air Cargo Liberalization Policy in Korea, China and Japan (한.중.일의 역내 항공화물운송 자유화정책과 협력중진방안)

  • Lee, Yeong-Heok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.22 no.2
    • /
    • pp.135-154
    • /
    • 2007
  • The 3 Northeast Asian countries of Korea, Japan and China have been stricter to each other than to other countries of out-region in air liberalization. The prominent reason of this intra-regional protective policy in air transportation seems to be the difference in competitive strength of their national flag carriers. As the 3 countries realize the importance of their mutual cooperation in the region, since China grows to be one of the leading economies in the world and the intra-regional trade and visitors increase tremendously, they are now taking the policy of intra-regional air liberalization more vigorously than before. Especially air cargo liberalization is easier than air passenger liberalization because they realize that the development of open economy is based on free flow of logistics regardless of the competitiveness of their national flag carriers. As Korea is the leading country in the region to promote air liberalization, this paper reviews the importance and growing trend of air cargo, analyzes current air liberalization policy between Korea, Japan and China and the initial effects of open sky in the routes of Shandung-Korea, and suggests the new policies of air liberalization to promote free flow of air logistics.

  • PDF

Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle (하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구)

  • Jeong, Soo-Jin;Jeong, Jinwoo;Ha, Seungchan
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

A Mathematical Model for Determination of PCE's Based on Delay for Two-Lane Two-Way Highway (양방향 2차로 도로의 지체시간 산정을 이용한 승용차환산계수 결정이론)

  • 이승준;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.149-162
    • /
    • 1999
  • One of the most important steps of the design, capacity and operation analysis stapes in the two-lane two way highways is the effect of heavy vehicle to traffic flow quality. This heavy vehicle's effect on traffic flow can be represented as PCE, which is the number of passenger cars that are displaced by a single heavy vehicle of a particular type under prevailing roadway, traffic, and control conditions. In this paper, we focus on the heavy vehicles effect on volume, speed, delay, and the maneuver of freedom which are major MOE's in traffic operation analysis and PCE criterion which should be measurable, determinable and able to reflect the traffic flow characteristics. Therefore, the objective of the paper is to determine the PCE criterion and to develop a new PCE determination method. In this study, delay is adopted as PCE criterion and, for calculation of delay, the highway is divided into the passing zone and the no-passing zone. PCE is determined by comparing the delay due to total traffic flow interaction with the delay due to a single heavy vehicle, Also, this paper proposes a new method to determine the average PCE on the highway that has the passing zones and no-passing zones.

  • PDF

Development of BPR Functions with Truck Traffic Impacts for Network Assignment (노선배정시 트럭 교통량을 고려한 BPR 함수 개발)

  • Yun, Seong-Soon;Yun, Dae-Sic
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.117-134
    • /
    • 2004
  • Truck traffic accounts for a substantial fraction of the traffic stream in many regions and is often the source of localized traffic congestion, potential parking and safety problems. Truck trips tend to be ignored or treated superficially in travel demand models. It reduces the effectiveness and accuracy of travel demand forecasting and may result in misguided transportation policy and project decisions. This paper presents the development of speed-flow relationships with truck impacts based on CORSIM simulation results in order to enhance travel demand model by incorporating truck trips. The traditional BPR(Bureau of Public Road) function representing the speed-flow relationships for roadway facilities is modified to specifically include the impacts of truck traffics. A number of new speed-flow functions have been developed based on CORSIM simulation results for freeways and urban arterials.

A Study on the Pressure Increment of Fuel Pump for GDI Engines Considering Leakage Flows (누설특성을 고려한 GDI 엔진용 연료펌프의 고압생성 증진에 관한 연구)

  • Na, Byung-Chul;Kim, Byoung-Soo;Choi, Suk-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.785-791
    • /
    • 2000
  • GDI (Gasoline Direct Injection) engines are considered as one of the candidates for next generation engines of passenger cars, which reduce exhaust emissions and fuel consumption. In GOI engines, a high-pressure gasoline supply system is required to directly inject the fuel to combustion chambers. Because of low lubricity of gasoline fuel, the clearance between a plunger and a barrel in GDI fuel pumps is too wide to achieve smooth hydrodynamic lubrication. Thus, it is difficult to generate high-pressure condition in GDI fuel pump since large amount of leakage flow occurs between the plunger and the barrel In this study, an optimum plunger design is presented to minimize leakage in the aspect of flow control. This paper analyzes leakage flow characteristics in the clearance to improve pumping performance of GDI fuel pumps. Effects of groove in the plunger are studied according to variations of depth and width. Evaluations of pumping performance are determined by the amount of pressure drop in the leakage path assuming a constant leakage flows. Both of turbulence and incompressible models are introduced in CFD (Computational Fluid Dynamics) analysis. Design parameters have been introduced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted. As results of CFD analysis in various geometrical cases, optimum groove depths have been found to generate maximum sealing effects on gasoline fuel between the plunger and the barrel. This procedure offers a methodological way of an enhancement of plunger design for high-pressure GDI fuel pumps.

An Experimental Study on the Flow Around a Simplified 2-Dimensional Vehicle-Like body (단순화된 2차원 자동차형 물체주위의 유동에 관한 실험적 연구)

  • 유정열;김사량;강신형;백세진;이택시;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.178-189
    • /
    • 1989
  • An experimental study has been performed to study the effect of the base slant angle of a 1/10 scale two-dimensional vehicle-like body on its wake flow including the recirculating region, where the simplified shape of the body has been originated from a profile of a domestic passenger car. In the case of a Reynolds number based on the length of the model R=7.96*10$^{5}$ , the surface pressure coefficient, the mean velocity and the turbulent stresses have been measured, while the flow visualization technique using wool tuft has been adopted as well. When the base slant angle of the model is 15.deg., the free stream flowing parallel to the slant is observed to be separated from the lower edge of the slant, thus forming the smallest recirculating region. When the base slant angles are 30.deg. and 45.deg., the free streams are separated from the upper edge of the slant and the sizes of the recirculating zones are observed to be almost the same as when the base slant angle is 0.deg. From these observations, it is conjectured that between the base slant angles of 15.deg. and 30.deg. there exists a critical angle at which the size of the recirculating region becomes minimum and as the slant angle becomes larger than this critical angle the separation line moves along the slant towards the rear edge of the roof. Through the flow visualization technique, the existence of the two counter-rotating bubbles in the recirculating region has been clearly observed and verified.

The Study on Fire Phenomena in The Deeply Underground Subway Station (대심도 지하역사에서의 화재현상 연구)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1773-1780
    • /
    • 2008
  • When the fire occur in the deeply underground subway station, the difficulties of passenger evacuation are expected because of many stairs to the exit. In this study, SOONGSIL-University station (7 line, 47m depth) is the one of the deepest subway stations of the each line in the Seoul metro. The numerical computational-simulation was performed for the fire driven flow in the subway station. Hot and smoke flow was analyzed from the simulation results. The proper plan of evacuation against fire was considered through the results. The fire driven flow was simulated using FDS code in which LES method was applied. The Heat Release Rate was 10MW and the ultrafast model was applied for the growing model of the fire source. The proper mesh size was determined from the characteristic length of fire size. The parallel computational method was employed to compute the flow and heat eqn's in the meshes, which are about 10,000,000, with 6cpu of the linux clustering machine.

  • PDF