• Title/Summary/Keyword: partitioning behavior

Search Result 74, Processing Time 0.029 seconds

Prediction of Distribution for Five Organic Contaminants in Biopiles by Level I Fugacity Model (Level I Fugacity Model을 이용한 Biopile 내 유기화합물 5종의 분포 예측)

  • Kim, Kye-Hoon;Kim, Ho-Jin;Pollard, Simon J.T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.228-234
    • /
    • 2008
  • The purpose of this study was to predict environmental distribution of anthracene, benzene, benzo[a]pyrene, 1-methylphenanthrene and phenanthrene in a four phase biopile system - air, water, soil and non aqueous phase liquid (NAPL) phase using level I fugacity model. Soil samples used for this study were collected from three sites in the United Kingdom which were historically contaminated with petroleum hydrocarbons. The level I fugacities (f) for the five contaminants were markedly different, however, the fugacities of each contaminant in three soil samples did not show significant difference. NAPL and soil were the dominant phases for all five contaminants. Results of this study indicated that difference in percentage of organic carbon strongly influenced the partitioning behavior of the cntaminants. The presence of benzene calls for an urgent need for risk-based management of air and water phase. Whereas insignificant amount of chemicals leached in the water phase for other organic contaminants showing greatly reduced potential of groundwater contamination. Furthermore, this study helped us to confirm the association of risk critical contaminants with the residual saturation in treated soils. They also can be used to emphasize the importance of accounting for the partitioning behavior of both NAPL and soil phases in the process of the risk assessment of the sites contaminated with petroleum hydrocarbons.

Evaluation of Deformation Characteristics and Vulnerable Parts according to Loading on Compound Behavior Connector (복합거동연결체의 하중재하에 따른 변형 특성 및 취약부위 산정)

  • Kim, Ki-Sung;Kim, Dong-wook;Ahn, Jun-hyuk
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.524-530
    • /
    • 2019
  • Purpose: In this paper, we construct a detailed three-dimensional interface element using a three-dimensional analysis program, and evaluate the composite behavior stability of the connector by applying physical properties such as the characteristics of general members and those of reinforced members Method: The analytical model uses solid elements, including non-linear material behavior, to complete the modeling of beam structures, circular flanges, bolting systems, etc. to the same dimensions as the design drawing, with each member assembled into one composite behavior linkage. In order to more effectively control the uniformity and mesh generation of other element type contact surfaces, the partitioning was performed. Modeled with 50 carbon steel materials. Results: It shows the displacement, deformation, and stress state of each load stage by the contact adjoining part, load loading part, fixed end part, and vulnerable anticipated part by member, and after displacement, deformation, The effect of the stress distribution was verified and the validity of the design was verified. Conclusion: Therefore, if the design support of the micro pile is determined based on this result, it is possible to identify the Vulnerable Parts of the composite behavior connector and the degree of reinforcement.

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.267-276
    • /
    • 2019
  • The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

Behavior of ^{14}C$--BHC Residues in Rice Grain (미곡에 있어서 ^{14}C$-BHC 잔류분의 행동)

  • Su-Rae Lee;Yong-Hwa Kim
    • Nuclear Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.221-228
    • /
    • 1981
  • ${\gamma}$-(U-$^{14}$ C)-BHC was applied to rice plants grown in a pot and its fate in the growth, polishing and oil-extraction processes of the grain was investigated. The $^{14}$ C-activity was absorbed and translocated widely in the plant and the recovery of applied $^{14}$ C-activity in the straw and grain was about 2.8%, of which 9.4% was found in the brown rice. The % partitioning of $^{14}$ C-residues in bran and polished rice was 12:88 and that in oil and oilcake was 37 : 63. Characterization of $^{14}$ C-residues indicated the presence of ${\gamma}$-BHC, pentachlorocyclohexene, trichlorobenzene and hydrophilic metabolites, whose proportions were different in the straw and grain.

  • PDF

The mechanisms leading to ontogenetic diet shift in a microcanivore, Pterogobius elapoides(Gobiidae)

  • Choi, Seung-Ho;Suk, Ho-Young
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • A variety of fish species undergo an ontogenetic change in prey selectivity, and several potentially interacting factors, including nutrient requirement, microhabitat change, and foraging ability, may account for the occurrence of the shift. Here we examine the foraging ecology and ontogenetic diet shift of a micro-carnivorous goby, Pterogobius elapoides (serpentine goby), dominant component of fish assemblage in shallow rocky areas off the coast in Korea and Japan. Although most other gobies are primarily benthic carnivores, P. elapoides is a semipelagic fish; however, little is known about how those species change their foraging tactics with growth. In our diet analyses, the most common diet was pelagic copepods and benthic amphipods, and diet shift was observed from pelagic to benthic with growth. The ontogenetic diet shift seems to be the result of the preference for energetically more profitable prey in larger-size classes as well as the results of different prey availability due to among-habitat variation in diet. However, differential food preference does not appear to affect individual scope for searching food. Several factors such as predation pressures and interspecific resource partitioning might contribute to the changes in diet observed among size classes, which were included in our ongoing tests.

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(I) : General Approach (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(I) : 일반적인 접근법)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.165-175
    • /
    • 2000
  • In recent years, it becomes a very important issue to consider the mechanical systems such as high-speed vehicles and railway trains moving on elastic beam structures. In this paper, a general approach, which can predict the dynamic behavior of constrained mechanical system and elastic beam structure, is proposed. Also, various supporting conditions of a foundation support are considered for the elastic beam structures. The elastic structure is assumed to be a nonuniform and linear Bernoulli-Euler beam with proportional damping effect. Combined Differential-Algebraic Equations of motion are derived using multibody dynamics theory and Finite Element Method. The proposed equations of motion can be solved numerically using generalizd coordinate partitioning method and Predictor-Corrector algorithm, which is an implicit multi-step integration method.

  • PDF

Identification of Workflow for Potential Contaminants and their Physicochemical Properties (불특정 오염부지에 대한 잠재적 오염물질 선정 및 물리·화학적 특성 정보화)

  • Kim, Yoon Ji;Kim, Youn-Tae;Han, Weon Shik;Lee, Seunghak;Choung, Sungwook
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.8-22
    • /
    • 2019
  • Among numerous chemicals used globally, the number of emerging contaminants is increasing. Numerical modeling for contaminant fate and transport in the subsurface is critical to evaluate environmental and health risk. In general, such models require physicochemical properties of contaminants as input values, which can be found in numerous chemical databases (DB). However, there exist lack of information specific to recently emerging contaminants, which requires estimation of physicochemical properties using regression programs. The purpose of the study is to introduce the workflow for identifying physicochemical properties of potential contaminants utilizing numerous chemical DBs, which frequently lists up potential contaminants for estimating chemical behavior. In this review paper, details of several chemical DBs such as KISChem, TOXNET, etc. and regression programs including EPI $Suite^{TM}$, ChemAxon, etc. were summarized and also benefit of using such DBs were explained. Finally, a few examples were introduced to estimate predominant phase, removal ratio, partitioning, and eco-toxicities by searching or regressing physicochemical properties.

An influence on EDC/PPCPs adsorption onto single-walled carbon nanotubes with cationic surfactant (단일벽 탄소나노튜브의 미량유해물질 흡착거동에서 양이온 계면활성제의 영향에 관한 연구)

  • Heo, Jiyong;Lee, Heebum;Han, Jonghun;Son, Mihyang;Her, Namguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.419-429
    • /
    • 2014
  • Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (${\pi}-{\pi}$ Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of $17{\alpha}$-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through $CH_3-CH_3$ interaction by forming hemimicelles on SWNT surface.

Effect of Water Content on the Transport of Gemini Surfactant and Hydrophobic Organic Compounds (수분함량이 쌍둥이형 계면활성제 및 소수성 유기오염물질의 거동에 미치는 영향에 관한 연구)

  • Park, In-Sun;Park, Jae-Woo;Cho, Jong-Soo;Hwang, In-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 2003
  • An immobilization zone can be constructed by modifying soils in the vadose zone with surfactants, which can be used to promote retardation of organic contaminants in the subsurface. Column experiments were conducted to investigate the behavior of surfactants and organic contaminants in unsaturated and saturated conditions with different water contents (25%, 50%, 75%, 100%). Transport and sorption of surfactant (dialkylated disulfonated diphenyl oxide) in the columns containing aluminum oxide was similar under the conditions at different water contents. However, transport of a model organic compound (naphthalene) was retarded as the water content decreased by enhanced partitioning of the compound into the surfactants that were sorbed on the aluminum oxide. This suggests that the immobilization method could well be applied to vadose zone as well as to saturated zone.

  • PDF