• 제목/요약/키워드: particulate flow

검색결과 269건 처리시간 0.026초

미립 물질 제거를 위한 소형 사이클론 분리기의 이론적 연구 및 실험적 검증 (Theoretical Analysis and Experimental Evaluation of Small Cyclone Separator to Remove Fine Particulate Matter)

  • 고한결;김홍석
    • 대한기계학회논문집A
    • /
    • 제37권1호
    • /
    • pp.77-82
    • /
    • 2013
  • 사이클론 분리기는 제작이 쉽고, 경제적이며, 가혹한 환경에서도 사용이 가능하기 때문에 다양한 산업공정에서 미립 물질을 제거하기 위한 장비로 널리 활용되고 있다. 하지만 사이클론의 복잡한 유동 특성 때문에 입자를 분리하는 세부적인 메커니즘에 대한 이해는 아직 부족한 실정이다. 본 연구에서는 사이클론 분리기의 기하학적 특성과 유동 파라미터가 미치는 영향을 고려하여 사이클론의 분리효율과 절단입경을 계산하기 위한 이론적인 연구를 진행하였다. 이론적 모델을 통해 예측한 분리효율과 절단입경은 $0.5-30{\mu}m$의 입자에 대한 실험결과와 잘 일치하였다. 또한 사이클론의 성능은 기하학적 특성과 유동 파라미터 뿐 아니라 표면의 마찰특성에도 현저한 영향을 받는 것으로 확인되었다.

남극 아문젠해에서 해수 중 Mn의 분포 특성 (Manganese in Seawaters of the Amundsen Sea, Antarctic)

  • 장동준;최만식;박종규;박경규;홍진솔;이상훈;정진영
    • Ocean and Polar Research
    • /
    • 제41권2호
    • /
    • pp.63-77
    • /
    • 2019
  • In order to investigate the behavior and seasonal variability of Mn as one of the bio-essential metals in the Amundsen sea, which is known as the most biologically productive coastal area around the Antartica, seawaters were collected using a clean sampling system for 10 stations (96 ea) in 2014 (ANA04B) and for 12 stations (139 ea) in 2016 (ANA06B) surveys of RV ARAON. Dissolved and particulate Mn concentration varied in the range of 0.15-4.43 nmol/kg and <0.01 to 2.42 nM in 2014 and in the range of 0.25-4.15 nmol/kg and 0.01-2.64 nM in 2016, respectively. From the sectional distribution of dissolved and particulate Mn, it might be suggested that dissolved/particulate Mn was provided from iceberg melting and diffusion/resuspension from sediments, respectively. Although this sea is highly productive, there was little evidence regarding the biological origin of dissolved Mn, but particulate Mn only in sea ice and offshore areas could be explained as originating from organic matters, e.g. phytoplanktons. And it could be suggested that the subsurface maximum of dissolved Mn was formed by isopycnal transport of melting materials from ice wall to offshore. Compared to early (2014) summer, temperature, salinity, biomass, dissolved and particulate Mn in late (2016) summer indicated that temporal variations might be resulted from the reduction of ice melting and mCDW flow, which induced a reduction in resuspension. In addition, in the late summer, particles including biomass were reduced, which brought about a reduction in the removal rate of dissolved Mn.

Hot Cell 내에 오염된 고방사능분진 제거를 위한 사이클론 개발 및 성능평가 (The Development and Performance Evaluation of a Cyclone to Remove Hot Particulate from a Contaminated Hot Cell)

  • 김계남;원휘준;최왕규;정종헌;오원진;박진호
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.217-226
    • /
    • 2006
  • 원자력연구소 핫셀의 구조와 오염특성이 조사되었다. SEM 측정결과 핫셀 내부에 부착된 고방사능 분진의 크기는 $0.2{\sim}10{\mu}m$이었다. 사이클론의 최적 Vortex finder의 길이는 49 mm이고, 모의입자 유입속도는 15m/sec가 적합했다. 이때 $3{\mu}m$의 포집효율은 약 85%였다. 모의 입자 유입속도가 15m/sec보다 빠를 때, 포집효율의 증가율은 크지 않았다. 유입가스의 온도가 증가할 때, 포집효율은 약간 감소했다. Vortex finder의 길이가 증가할수록 사이클론내의 압력강하는 커졌다. Cut size diameter는 Reynolds number의 증가와 함께 감소했다. 측정된 Reynolds number에 근거하면, 사이클론 내부는 난류이고 이 난류는 사이클론 내의 압력강하에 원인이 된다고 사료된다. $Stk^{1/2}_{50}$는 Re 값의 증가와 함께 감소하고, Re의 값이 커질 때에서 일정한 값에 수렴했다. 즉, 6000-8000의 Re에서 $Stk^{1/2}_{50}$는 약 0.045를 나타냈다.

  • PDF

코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어 (Flow control of air blowing and vacuuming module using Coanda effect)

  • 정우태
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.115-121
    • /
    • 2017
  • 도시철도 터널 내에 축적된 미세먼지(PM10 and PM2.5)의 제거를 위해 사용되는 분진흡입차량은 에어 블로어와 흡입시스템으로 구성된 하부흡입시스템의 설계방법에 따라 성능이 달라진다. 본 논문에서는 터널 집진차량의 하부에 설치된 먼지 흡입시스템의 효율 향상을 위하여 흡입구와 에어 블로어에 코안다 효과를 이용한 유속 조절장치를 적용하여 그 효과를 확인하였다. 특히, 공기 유동에 대한 수치해석을 통하여 진공 흡입구 내에 코안다 효과를 이용한 유속조절장치를 적용하였으며, 유속 조절각이 약 90도 내외일 때 유속의 상승과 더불어 유동의 안정화가 동시에 이루어질 수 있음을 확인하였다. 또한 링 블로어에 의해 동작되는 에어 나이프형 공기 블로어는 양쪽 끝 가장자리에 코안다 효과를 유도할 수 있는 엣지 구조를 삽입함으로써 블로어 양 끝단의 유속 저하를 개선할 수 있음을 확인하였다. 이러한 4개의 통합된 모듈 형식의 흡입 시스템의 설계는 최적화를 통하여 바닥 먼지가 비산됨과 동시에 흡입구로 흡입되어 궤도면에 누적된 미세먼지와 초미세먼지의 제거에 효과적으로 활용될 수 있을 것으로 기대된다.

공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구 (Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit)

  • 권순박;박덕신;조영민;김세영;김명준;김호중;김태성
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF

Microfluidic Flow Cytometry: Principles of Cell Analysis and Applications

  • Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2006
  • Microsystems create new opportunities for conventional cell analysis by combining microfluidics and flow cytometry. This article describes recent developments in conventional flow cytometers and related microfluidic flow cytometers to detect, analyze, and sort cells or particles. Flow cytometry strongly consisted of fluidics, optics and electronics requires a large space to equip various components, which are mostly the fluidic components such as compressor, fluid handling system. Adopting microfluidics into flow cytometry enables volume- and power-efficient, inexpensive and flexible analysis of particulate samples. In this paper, we review various efforts that take advantage of novel techniques to build microfluidic cell analysis systems with high-speed analytical capability. Highly integrated microfluidic cytometry shows great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings.

  • PDF

사각형 여과 집진기 충격기류 탈진시스템의 기초 연구 (The Fundamental Study on Pulse Jet Cleaning of Rectangular Bag-Filter System)

  • 박승욱;김태형;양준호;이효우;하현철;정재훈
    • 한국산업보건학회지
    • /
    • 제18권2호
    • /
    • pp.149-160
    • /
    • 2008
  • Bag-filter system has been widely used in industrial field to remove the particulate matters from the exhaust gas. The cylindrical type of bag-filter has been generally used. But it has many shortcomings. The reattachment of separated particles on the surface of bags could result in high pressure drop of bag-filter system and subsequent decrease of air flow rate since the cylindrical type bag-filter system should have the upward flow pattern. In addition, the supply of very high pressure pulse air jet to remove particulate matters on the surface of filter could result in a frequent rupture of bags. To overcome these shortcomings of the cylindrical type, the rectangular type was developed in the developed countries and imported to Korea. But, there was not many design data available to understand the mechanisms. Thus, the fundamental experiments were conducted in this study to get some ideas about the pulse jet cleaning of rectangular type bag filter system. The experimental factors are as follows; pulse distance, pulse duration, pulse interval, pulse pressure and pulse nozzle type. Experiments followed the factorial design method. With the shorter pulse distance, the distribution of pressure drops was relatively not uniform while the particulate removal efficiency was higher. With the longer duration of pulsing and the more number of pulse nozzle, the removal efficiency was higher and the pressure drop distribution was more uniform.

Pool Combustion of Iso-Propanol Fuel including IPA and PCBs in different Type Vessels

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.102-108
    • /
    • 2006
  • On the refutation demanded for a control of various toxic substances. PCBs(poly chlorinated biphenyl) has a fatal poisonous matter in the ecosystem and the environmental pollution as it Is a kind of stable chemical substance. Especially, the gross Product of PCBs is estimated at about one million tonnage all over the world. However it is kept on storing in untreated state, then has a deterioration by the Prolonged storage and a risk of overflowing. Therefore, this research examined the fundamental characteristics of combustion and emission for the target of using the IPA (iso-propyl alcohol) solution as a part of PCBs control. IPA was filled to three kinds of Vessel, i.e. Vessel I, II, and III, and then was investigated as follows combustion shape, flame temperature. mass burning velocity, and PM(Particulate matter). A radial thermometer and a C-A thermocouple measured the flame temperature, and the optical extinction method by using He-Ne laser and the filter weight method used in the PM measurement. As a result, with an increasing of L/S ratio, the flame length become shorter and the burning velocity is more rapid, but the particulate matters is higher. It is supposed that the air flow rate is high on Vessel. and then the combustion is Promoted in the surface area of the upstream zone. The future works plan to investigate the characteristics with an using of the mixing of IPA and PCBs

포집량에 따른 p-DPF의 정화효율 및 BPT 특성에 관한 실험적 연구 (An Experimental Study on Filtration Efficiency and BPT Characteristics by PM Loading in Partial-diesel Particulate Filter)

  • 오광철;이경복;이춘범
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.147-154
    • /
    • 2012
  • The number of vehicles applied diesel engine are rapidly rising for fuel economy. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced emission regulation. The Diesel Particulate Filter (DPF) system is considered as the most efficiency method to reduce particulate matter (PM) by car makers but also in retrofit market. In recently, various kinds of partial flow DPF are widely used for proper filtration performance and reducing of pressure drop but it is difficult to define the characteristics of these filters because the filtration mechanism is obscure according to the status of these systems. In this paper we investigated the characteristics of cell open type DPF according to the status of filter especially, PM loading. The PM loading mass in the p-DPF are predicted from increase of differential pressure of DPF and the trend of filtration efficiency so that we can measure filtration efficiency and Balance Point Temperature (BPT) of this p-DPF according to PM loading.

후처리장치 성능 평가를 위한 Dump Combustor의 활용 (The Application of Dump Combustor for Evaluation of After-Treatment System)

  • 남연우;이원남;오광철;이춘범
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.16-23
    • /
    • 2007
  • Employing an after-treatment system has almost become a mandatory requirement for Diesel vehicles, which results from a reinforced exhaust regulations as the number of vehicles powered by a Diesel engine increases. The Diesel Particulate Filter (DPF) system is considered as one of the most efficient method to reduce particulate matter (PM); however, the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas composition and flow rate of exhaust gas are important parameters in DPF evaluation processes, especially during a regeneration process. Engine dynamometer and segment tester are generally used in DPF evaluation so far. These test methods, however, could not completely evaluate the effect of various parameters on real DPF, such as oxygen concentration, amount of soot and exhaust gas temperatures. The evaluation of DPF systems using a dump combustor has been verified experimentally and this dump combustor system is likely to be appropriate for the DOC (Diesel Oxidation Catalyst) and SCR (Selective Catalytic Reduction) assessments test, too.

  • PDF