• 제목/요약/키워드: particle velocity equation

검색결과 153건 처리시간 0.03초

세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화 (Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials)

  • 오상엽;신형섭;서창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

Thermophoresis in Dense Gases: a Study by Born-Green- Yvon Equation

  • Han Minsub
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.1027-1035
    • /
    • 2005
  • Thermophoresis in dense gases is studied by using a multi-scale approach and Born- Yvon­Green (BYG) equation. The problem of a particle movement in an ambient dense gas under temperature gradient is divided into inter and outer ones. The pressure gradient in the inner region is obtained from the solutions of BYG equation. The velocity profile is derived from the conservation equations and calculated using the pressure gradient, which provides the particle velocity in the outer problem. It is shown that the temperature gradient applied to the quiescent ambient gas induces some pressure gradient and thus flow tangential to the particle surface in the interfacial region. The mechanism that induces the flow may be the dominant source of the thermophretic particle movement in dense gases. It is also shown that the particle velocity has a nonlinear relationship with the applied temperature gradient and decreases with increasing temperature.

Splitting method for the combined formulation of fluid-particle problem

  • Choi, Hyung-Gwon;Yoo, Jung-Yul;Jeoseph, D.D.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.709-714
    • /
    • 2000
  • A splitting method for the direct numerical simulation of solid-liquid mixtures is presented, where a symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly proposed splitting method works well with a matrix-free formulation fer some bench mark problems avoiding an erroneous pressure field which appears when using the conventional pressure equation of a splitting method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to be approximated by the 'intermediate velocity' instead of treating it as unknowns since it is necessary as a boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by applying the projector of the combined formulation. It has been tested over some bench mark problems and gives reasonable pressure fields.

  • PDF

입자충격속도에 따른 세라믹재료의 콘크랙 형상 변화 (Variation of Cone Crack Shape in Ceramic Materials According to Spherical Impact Velocity)

  • 오상엽;신형섭;서창민
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.380-386
    • /
    • 2002
  • Damage behaviors induced in silicon carbide by an impact of particle having different material and size were investigated. Especially, the influence of the impact velocity of particle on the cone crack shape developed was mainly discussed. The damage induced by spherical impact was different depending on the material and size of particles. Ring cracks on the surface of specimen were multiplied by increasing the impact velocity of particle. The steel particle impact produced larger ring cracks than that of SiC particle. In the case of high velocity impact of SiC particle, radial cracks were produced due to the inelastic deformation at the impact site. In the case of the larger particle impact, the damage morphology developed was similar to the case of smaller particle one, but a percussion cone was farmed from the back surface of specimen when the impact velocity exceeded a critical value. The zenithal angle of cone cracks developed into SiC material decreased monotonically with increasing of the particle impact velocity. The size and material of particle influenced more or less on the extent of cone crack shape. An empirical equation, $\theta$= $\theta$$\sub$st/, v$\sub$p/(90-$\theta$$\sub$st/)/500 R$\^$0.3/($\rho$$_1$/$\rho$$_2$)$\^$$\frac{1}{2}$/, was obtained as a function of impact velocity of the particle, based on the quasi-static zenithal angle of cone crack. It is expected that the empirical equation will be helpful to the computational simulation of residual strength in ceramic components damaged by the particle impact.

평판에 충돌하는 미립자의 유동분석 (Analysis of Particle Motion Impinging on a Flat Plate)

  • 김진;김병문
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.9-16
    • /
    • 2002
  • The particles velocity in the instantaneous flow field and velocity change of particles along the jet centerline for various particle diameter in a circular turbulent impingement jet are investigated by using particle image velocimetry(PIV) and an equation of particle motion simplified by terms of inertia forces, drag and gravitational force. The jet Reynolds number was 3300 and 8700, and glass beads of 30,58 and 100$\mu$m in diameter were used. The PIV results show that the direction and size of velocity depends not only on the number density of particle but also on the particle momentum. The results obtained form calculation suggest that the particle velocity near the first impingement region deviated from local air velocity, which accords well with the PIV results. The rebound height of particle increase with the particle diameter. In the second-impingement, particle velocities increased sluggishly with Re=3300 but particle velocities uniformed with Re=8700 in stagnation region.

조립입자 침강속도에 대한 실험적 관찰 및 비교분석 (Experimental Observation of the Settling Velocity of Coarse Particles and Comparative Analysis)

  • 손무락;장병식
    • 한국지반환경공학회 논문집
    • /
    • 제16권10호
    • /
    • pp.33-38
    • /
    • 2015
  • 본 논문에서는 물속에서의 조립입자 침강속도에 대한 특성을 파악하기 위해 다양한 재료 및 입자크기에 대한 실험적 관찰을 수행하고 그 결과들을 재료별로 비교함과 더불어 기존에 발표된 입자침강속도 예측을 위한 경험식들과 상호비교하였다. 본 연구에서는 폴리아세탈, 유리 및 스틸의 세 가지 서로 다른 재료 및 크기로 구성된 구모양의 입자를 이용하였으며, 입자의 직경은 1mm에서 20mm까지 다양한 직경을 고려하였다. 실험결과, 조립입자의 침강속도는 아주 작은 크기(약 $50{\mu}m$ 이하)의 입자에만 적용된다고 알려진 Stokes 식과는 상당한 차이를 나타냈으며, 또한 입자의 크기에 관계없이 침강속도를 예측하는 다른 연구자들의 경험식들과도 입자의 크기 및 재료의 종류(밀도)에 따라 서로 상이한 결과를 나타냈다. 실험에서 관찰된 조립입자의 침강속도는 재료의 종류에 관계없이 입자의 크기가 상대적으로 작을 때는(약 3mm 이하) 기존의 입자 침강속도에 대한 경험식들과 유사하였으나 그 이상에서는 입자의 크기가 증가할수록 기존 경험식들과의 차이도 더 크게 발생하였다. 본 연구를 통해서 조립입자의 침강속도는 입자의 크기 및 재료밀도에 따라 상당한 차이가 발생할 수 있다는 것을 알았으며 기존 경험식들은 실제로 발생하는 조립입자의 침강속도를 잘 예측하지 못해 향후 조립입자의 침강속도를 예측하기 위해 기존 경험식들을 있는 그대로 적용하지는 말아야 하고 실험 등을 통해 검증 및 확인하는 과정이 반드시 필요하다는 것을 파악하였다. 본 연구결과는 향후 물속에서의 조립입자의 침강속도를 이해하는 데 유용한 정보를 제공할 수 있을 것으로 판단된다.

노천발파 표준공법의 진동예상식 (Particle Velocity Equation for Korean Surface Blasting Type)

  • 양형식;김원범;최미진;장선종
    • 화약ㆍ발파
    • /
    • 제22권3호
    • /
    • pp.27-33
    • /
    • 2004
  • 대한화약발파공학회 제정 노천 발파 표준공법에 따른 진동식을 산정하기 의하여 국내자료를 주로 이용하여 표준공법에 적합한 진동식을 제시하고 공법별, 거리별 표준 장약량을 제시하였다. 건교부 기준식으로 사용되는 미광무국(USBM) 식의 경우 같은 환산거리에 대한 최대 진동속도가 낮게 평가되어 건교부 안에 의한 설계는 환경문제 발생 개연성이 상존함을 알 수 있다.

해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용 (Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation)

  • 김미영;최장운;이현;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

보오텍스 방법에 의한 순간 출발하는 2차원 날개 주위의 점성유동 모사 (Simulation of Viscous Flow Past NACA 0012 Poil using a Vortex Particle Method)

  • 이승재;김광수;서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.161-165
    • /
    • 2004
  • In the vortex particle method based on the vorticity-velocity formulation for solving the Wavier-Stokes equations, the unsteady, incompressible, viscous laminar flow over a NACA 0012 foil is simulated. By applying an operator-splitting method, the 'convection' and 'diffusion' equations are solved sequentially at each time step. The convection equation is solved using the vortex particle method, and the diffusion equation using the particle strength exchange(PSE) scheme which is modified to avoid a spurious vorticity flux. The scheme is improved for variety body shape using one image layer scheme. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsively started NACA 0012 foil for Reynolds number 550.

  • PDF

Electrostatic Precipitability of the Coal Fly-Ash by the Pilot Scale Test

  • Ahn, Kook-Chan;Kim, Bong-Hwan;Jang, Yang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.602-612
    • /
    • 2001
  • The equation of the particle collection efficiency proposed by Deutsch has been modified through the various experiments to correct the errors caused by the assumptions made for the equation. In order to get an modified Deutsch equation that can be applied to real conditions, a pilot scale electrostatic precipitator is used. The effects of operational variables on the particle collection efficiency are evaluated. Particle resistivity, gas temperature, moisture contents in gas, gas velocity and particle concentration are used as the operational variables. Two different types of coal fly-ash obtained from the fluidized bed combustor and the pulverized coal combustor are used as test particulate to evaluate the effect of the physiochemical and electrical characteristics of the particle on the particle collection efficiency. The experimental results are fitted with the modified Deutsch equation made by Matts-Ohnfeldt and the extended Deutsch equation made by E. C. Potter to evaluate the effect of the particle characteristics and the operation conditions on the particle collection efficiency of the electrostatic precipitator.

  • PDF