• 제목/요약/키워드: particle velocities

검색결과 268건 처리시간 0.034초

Acoustic Characteristics of Mufflers with an Extended Inlet and Outlet (입출구가 연장된 동심형 소음기의 음향해석)

  • 이준신
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권5호
    • /
    • pp.503-509
    • /
    • 2002
  • Cylindrical chamber silencers with an extended inlet and outlet are extensively used in many application fields to reduce the propagated noise in ducts. The basic attenuation effectiveness in the low frequency region can be explained by the reactive wave action inside the expansion chamber associated with the geometric configurations of the inlet and outlet locations, and the area expansion of the jacket. In this study. an acoustic analysis is carried out for a concentric extended pipe inserted into a simple expansion chamber. An algebraic equation is derived by using the eigenfunction expansion and orthogonality principle in which the acoustic pressures and particle velocities defined on each subdivided surface are expressed by the separable coordinates. By using the proposed analytical method, transmission losses are predicted for several configurations of the concentric extended systems and they agree very well with experimental results.

Flame Propagations of Gasoline-Air Mixtures by Electrostatic Discharge Energies (정전기 방전에너지에 따른 가솔린-공기 혼합물의 화염전파)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • 제15권3호
    • /
    • pp.6-10
    • /
    • 2011
  • Experimental studies were carried out to investigate the effects on flame propagation of gasoline-air mixtures by different electrostatic discharge energies in a cylindrical chamber. Three different ignition energies were used: 1 mJ, 50 mJ and 98 mJ. In this work, a high-speed particle image velocimetry technique was applied to visualize the flow-field around ignition electrodes. It was found that as the ignition energy increased, the ignition kernel was different. The different ignition kernel caused different flame initiation. During the flame initiation, the higher ignition energy was applied, the higher flame speed was observed. However, with increasing time, the flame speeds were independent of the ignition energies used. Theses observed flame behaviors were similar to computational simulations shown in the literature. It was also found that as the ignition energies increased, the velocities of unburnt mixtures ahead of propagating flame fronts increased.

An Analytical Study of Regular Waves Generated by Bottom Wave Makers in a 3-Dimensional Wave Basin (3차원 조파수조에서 바닥 조파장치에 의해 재현된 규칙파에 대한 해석적 연구)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제34권4호
    • /
    • pp.93-99
    • /
    • 2022
  • Analytical solutions for regular waves generated by bottom wave makers in a 3-dimensional wave basin were derived in this study. Bottom wave makers which have triangular, rectangular and combination of two shapes were adopted. The 3-dimensional velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions in a wave basin. Then, analytical solutions of 3-dimensional particle velocities and free surface displacement were derived from the velocity potential. The solutions showed physically valid results for regular waves generated by bottom wave makers in a wave basin. The analytical solution for obliquely propagating wave generation from bottom wave maker which works like a snake was also derived. Numerical results of the solution agree well with theoretically predicted results.

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • 제15권2호
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

A Study on Scour Characteristics of Artificial Reef-Installed Grounds in the East and West Coasts (동해안 및 서해안 인공어초 설치 지반의 세굴 발생 특성 연구)

  • Yun, Dae-Ho;Lim, Byeong-Gwon;Lee, Ji-Sung;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제44권3호
    • /
    • pp.337-348
    • /
    • 2024
  • Artificial reef often experiences a functional loss due to scour, even though serveral surveys of a seabed were performed prior to installation. Particularly in the east and west coasts in Korea, where the artificial reefs are installed, there are clear differences in the geotechnical characteristics of the seabed. Therefore, in this study, both field surveys and laboratory experiments were conducted to investigate the scouring characteristics of artificial reefs installed on the east and west coasts of Korea. The laboratory experiments were performed with different velocities and soil types. The field survey results of artificial reef revealed that artificial reef-installed seabeds in the east and west coasts are more vulnerable to scour than settlement. Particularly in the west coast, the loss ratio caused by scour was found to exceed 50 % in most cases. The experimental results showed that scouring occurred faster and more severely on the west coast seabed, which has a smaller particle size compared to the east coast. Additionally when the scour depth exceeded approximately 10 % of the height of the artificial reef, the artificial reef tilted forward and further scouring was induced.

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • 제15권5호
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Analysis of Rainfall Infiltration Velocity for Unsaturated Soils by an Unsaturated Soil Column Test : Comparison of Weathered Gneiss Soil and Weathered Granite Soil (불포화토 칼럼시험을 통한 불포화토 내 강우침투속도 분석: 편마암 풍화토와 화강암 풍화토의 비교)

  • Park, Kyu-Bo;Chae, Byung-Gon;Kim, Kyeong-Su;Park, Hyuek-Jin
    • Economic and Environmental Geology
    • /
    • 제44권1호
    • /
    • pp.71-82
    • /
    • 2011
  • The unsaturated soil column tests were carried out for weathered gneiss soil and weathered granite soil in order to obtain the relationship between rainfall intensity and infiltration velocity of rainfall on the basis of different unit weight conditions of soil. In this study, volumetric water content and pore water pressure were measured using TDR sensors and tensiometers at constant time interval. For the column test, three different unit weights were used as in-situ condition, loose condition and dense condition, and rainfall intensities were selected as 20 mm/h and 50 mm/h. In 20 mm/h rainfall intensity condition, average rainfall infiltration velocities for both gneiss and weathered granite soils were obtained as $2.854{\times}10^{-3}$ cm/s ~ $1.297{\times}10^{-3}$ cm/s for different unit weight values and $2.734{\times}10^{-3}$ cm/s ~ $1.707{\times}10^{-3}$ cm/s, respectively. In 50 mm/h rainfall intensity condition, rainfall infiltration velocities were obtained as $4.509{\times}10^{-3}$ cm/s ~ $2.016{\times}10^{-3}$ cm/s and $4.265{\times}10^{-3}$ cm/s ~ $3.764{\times}10^{-3}$ cm/s respectively. The test results showed that the higher rainfall intensity and the lower unit weight of soil, the faster average infiltration velocity. In addition, the weathered granite soils had faster rainfall infiltration velocities than those of the weathered gneiss soils except for the looser unit weight conditions. This is due to the fact that the weathered granite soil had more homogeneous particle size, smaller unit weight condition and larger porosity.

Sediment Particulate Motions Over a Ripple Under Different Wave Amplitude Conditions (파랑에 의한 해저 사련 위에서의 유사입자의 거동 특성)

  • Chang, Yeon S.;Ahn, Kyungmo;Hwang, Jin H.;Park, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제25권6호
    • /
    • pp.374-385
    • /
    • 2013
  • Sediment particle motions have been numerically simulated over a sinusoidal ripple. Turbulent boundary layer flows are generated by Large Eddy Simulation, and the sediment particle motions are simulated using Lagrangian particle tracking method. Two unsteady flow conditions are used in the experiment by employing two different wave amplitudes while keeping other conditions such as wave period same. As expected, the amount of suspended sediment particles is clearly dependent on the wave amplitude as it is increasing with increasing flow intensity. However, it is also observed that the pattern of suspension may be different as well due to the only different condition caused by wave amplitude. Specially, the time of maximum sediment suspension within the wave period is not coincident between the two cases because sediment suspension is strongly affected by the existence of turbulent eddies that are formed at different times over the ripple between the two cases as well. The role of these turbulent eddies on sediment suspension is important as it is also confirmed in previous researches. However, it is also found the time of these eddies' formation may also dependent on the wave amplitude over rippled beds. Therefore, it has been proved that various flow as well as geometric conditions under waves has to be considered in order to have better understanding on the sediment suspension process over ripples. In addition, it is found that high turbulent energy and strong upward flow velocities occur during the time of eddy formation, which also supports high suspension rate at these time steps. The results indicate that the relationship between the structure of flows and bedforms has to be carefully examined in studying sediment suspension at coastal regions.

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • 제18권6호
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

A Experimental Study on Behavioral Characteristics and Loss Ratio of Sediment for Reclaimed Revetment (매립호안의 유사 거동특성과 유실률에 관한 실험연구)

  • Kim, Dong Hyun;Cho, Jae Nam;Kim, Kyu-Sun;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제36권4호
    • /
    • pp.627-635
    • /
    • 2016
  • Recently, several construction projects have been built to create residential area, industrial complex and agricultural land on reclaimed on- and offshore regions. Estimating the quantity of filling materials during reclamation is the most curcial factor of the total construction cost of reclamation project. However, the estimation of loss ratio, defined as the ratio of loss amount to overall dumped amount, mostly depends on the empirical methods and formulae based on the material characteristics due to the lack of sufficient literature about the loss ratio according to hydraulic conditions. In this studies the loss ratio of materials considering flow conditions and material characteristics were examined through hydraulic experiments. A series of hydraulic experiments was conducted using five different hydraulic conditions and two types of materials such as sand and anthracite in a horizontal rectangular flume ($13.0m{\times}5.0m{\times}0.10m$), in which a round type revetment was installed. It is found that the loss ratio generally tends to increase with increasing the particle Froude number regardless of the types of materials. Also, when the flow velocity(u) becomes higher than the critical flow velocity ($u_c$), the loss ratios of sand and anthracite are dramtically increased up to 7.4% and 24.4%, respectively. As a future work, more specific mean velocities will be considered to figure out the loss ratio and more accurate estimation of amount of filling materials will be possible to present with confidence.