• Title/Summary/Keyword: particle tracking model

Search Result 164, Processing Time 0.028 seconds

Enhanced Representation for Object Tracking (물체 추적을 위한 강화된 부분공간 표현)

  • Yun, Frank;Yoo, Haan-Ju;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.408-410
    • /
    • 2009
  • We present an efficient and robust measurement model for visual tracking. This approach builds on and extends work on subspace representations of measurement model. Subspace-based tracking algorithms have been introduced to visual tracking literature for a decade and show considerable tracking performance due to its robustness in matching. However the measures used in their measurement models are often restricted to few approaches. We propose a novel measure of object matching using Angle In Feature Space, which aims to improve the discriminability of matching in subspace. Therefore, our tracking algorithm can distinguish target from similar background clutters which often cause erroneous drift by conventional Distance From Feature Space measure. Experiments demonstrate the effectiveness of the proposed tracking algorithm under severe cluttered background.

  • PDF

Robust 3D Hand Tracking based on a Coupled Particle Filter (결합된 파티클 필터에 기반한 강인한 3차원 손 추적)

  • Ahn, Woo-Seok;Suk, Heung-Il;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Tracking hands is an essential technique for hand gesture recognition which is an efficient way in Human Computer Interaction (HCI). Recently, many researchers have focused on hands tracking using a 3D hand model and showed robust tracking results compared to using 2D hand models. In this paper, we propose a novel 3D hand tracking method based on a coupled particle filter. This provides robust and fast tracking results by estimating each part of global hand poses and local finger motions separately and then utilizing the estimated results as a prior for each other. Furthermore, in order to improve the robustness, we apply a multi-cue based method by integrating a color-based area matching method and an edge-based distance matching method. In our experiments, the proposed method showed robust tracking results for complex hand motions in a cluttered background.

Simulation of Particle Beds with Combustion and Reduction in Steel Making Rotary Kilns (제철용 로터리 킬른 내의 연소 및 환원을 포함한 입자 거동 예측모사 해석)

  • Han, Woojoo;Jang, Kwonwoo;Han, Karam;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.173-175
    • /
    • 2015
  • We simulate the particle bed motions with combustion and reduction in steel making rotary kilns. The particle bed motions are simulated by a Lagrangian approach called Discrete Phase Model (DPM). To reduce the number of tracking particles, the Coarse Grain Model (CGM) was applied. The model for particle motions showed good agreements with experimental results. In addition to the particle motion, the combustion and reduction simulation was performed. The combustion and reduction simulation can consider heat, mass and momentum transfer between the gas phase and particle beds.

  • PDF

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

Human Body Motion Tracking Using ICP and Particle Filter (반복 최근접점와 파티클 필터를 이용한 인간 신체 움직임 추적)

  • Kim, Dae-Hwan;Kim, Hyo-Jung;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.977-985
    • /
    • 2009
  • This paper proposes a real-time algorithm for tracking the fast moving human body. Although Iterative closest point (ICP) algorithm is suitable for real-time tracking due to its efficiency and low computational complexity, ICP often fails to converge when the human body moves fast because the closest point may be mistakenly selected and trapped in a local minimum. To overcome such limitation, we combine a particle filter based on a motion history information with the ICP. The proposed human body motion tracking algorithm reduces the search space for each limb by employing a hierarchical tree structure, and enables tracking of the fast moving human bodies by using the motion prediction based on the motion history. Experimental results show that the proposed human body motion tracking provides accurate tracking performance and fast convergence rate.

Multi-sensor Single Maneuvering Target Tracking in Clutter using AMMPF (클러터를 고려한 다중 센서 환경에서의 AMMPF를 이용한 기동 표적 추적 알고리즘 연구)

  • Kim Da-Sol;Song Taek-Lyul;Oh Won-Chun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.479-482
    • /
    • 2004
  • In this article we consider a single maneuvering target Tracking algorithm in the presence of missing measurements and high clutter environments for multi-sensor target tracking problem. The tracking algorithm is based on the Particle filtering method to predict and update target states. Proposed is the AMM-PF(Auxiliary Multiple Model Particle Filter)[2] method for maneuvering target tracking to improve performance in track estimate and maintenance with a high level of uncertainty. The algorithm we propose is compared to the Extended Kalman Filter(EKF). A simulation study is included.

  • PDF

Bayesian Filter-Based Mobile Tracking under Realistic Network Setting (실제 네트워크를 고려한 베이지안 필터 기반 이동단말 위치 추적)

  • Kim, Hyowon;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1060-1068
    • /
    • 2016
  • The range-free localization using connectivity information has problems of mobile tracking. This paper proposes two Bayesian filter-based mobile tracking algorithms considering a propagation scenario. Kalman and Markov Chain Monte Carlo (MCMC) particle filters are applied according to linearity of two measurement models. Measurement models of the Kalman and MCMC particle filter-based algorithms respectively are defined as connectivity between mobiles, information fusion of connectivity information and received signal strength (RSS) from neighbors within one-hop. To perform the accurate simulation, we consider a real indoor map of shopping mall and degree of radio irregularity (DOI) model. According to obstacles between mobiles, we assume two types of DOIs. We show the superiority of the proposed algorithm over existing range-free algorithms through MATLAB simulations.

Person Tracking with a Mobile Robot using Particle Filters in Complex Environment (복잡한 환경에서 파티클 필터를 이용한 자율이동로봇의 사람추적방법)

  • Kwon, Ho-Sang;Kim, Young-Joong;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2796-2798
    • /
    • 2005
  • This Paper presents a method that a mobile robot can track persons in complex environment using particle filters. The topic of person following using mobile robot is researched in many different areas. The main problems of following a person are real time constraint, motion change of person during the tracking and occlusion with other objects. We present appearance adaptive models in a particle filter to realize robust visual tracking algorithm. Adaptive appearance model can handle occlusion with other people while target is moving.

  • PDF

Face Tracking Combining Active Contour Model and Color-Based Particle Filter (능동적 윤곽 모델과 색상 기반 파티클 필터를 결합한 얼굴 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2090-2101
    • /
    • 2015
  • We propose a robust tracking method that combines the merits of ACM(active contour model) and the color-based PF(particle filter), effectively. In the proposed method, PF and ACM track the color distribution and the contour of the target, respectively, and Decision part merges the estimate results from the two trackers to determine the position and scale of the target and to update the target model. By controlling the internal energy of ACM based on the estimate of the position and scale from PF tracker, we can prevent the snake pointers from falsely converging to the background clutters. We appled the proposed method to track the head of person in video and have conducted computer experiments to analyze the errors of the estimated position and scale.

Object Tracking Using Particle Filters in Moving Camera (움직임 카메라 환경에서 파티클 필터를 이용한 객체 추적)

  • Ko, Byoung-Chul;Nam, Jae-Yeal;Kwak, Joon-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.375-387
    • /
    • 2012
  • This paper proposes a new real-time object tracking algorithm using particle filters with color and texture features in moving CCD camera images. If the user selects an initial object, this region is declared as a target particle and an initial state is modeled. Then, N particles are generated based on random distribution and CS-LBP (Centre Symmetric Local Binary Patterns) for texture model and weighted color distribution is modeled from each particle. For observation likelihoods estimation, Bhattacharyya distance between particles and their feature models are calculated and this observation likelihoods are used for weights of individual particles. After weights estimation, a new particle which has the maximum weight is selected and new particles are re-sampled using the maximum particle. For performance comparison, we tested a few combinations of features and particle filters. The proposed algorithm showed best object tracking performance when we used color and texture model simultaneously for likelihood estimation.