• Title/Summary/Keyword: particle swarm optimization (PSO) method

Search Result 245, Processing Time 0.023 seconds

An Empirical Analysis Approach to Investigating Effectiveness of the PSO-based Clustering Method for Scholarly Papers Supported by the Research Grant Projects (개선된 PSO방법에 의한 학술연구조성사업 논문의 효과적인 분류 방법과 그 효과성에 관한 실증분석)

  • Lee, Kun-Chang;Seo, Young-Wook;Lee, Dae-Sung
    • Knowledge Management Research
    • /
    • v.10 no.4
    • /
    • pp.17-30
    • /
    • 2009
  • This study is concerned with suggesting a new clustering algorithm to evaluate the value of papers which were supported by research grants by Korea Research Fund (KRF). The algorithm is based on an extended version of a conventional PSO (Particle Swarm Optimization) mechanism. In other words, the proposed algorithm is based on integration of k-means algorithm and simulated annealing mechanism, named KASA-PSO. To evaluate the robustness of KASA-PSO, its clustering results are evaluated by research grants experts working at KRF. Empirical results revealed that the proposed KASA-PSO clustering method shows improved results than conventional clustering method.

  • PDF

An Improved Particle Swarm Optimization Adopting Chaotic Sequences for Nonconvex Economic Dispatch Problems (개선된 PSO 기법을 적용한 전력계통의 경제급전)

  • Jeong, Yun-Won;Park, Jong-Bae;Cho, Ki-Seon;Kim, Hyeong-Jung;Shin, Joong-Rin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1023-1030
    • /
    • 2007
  • This paper presents a new and efficient approach for solving the economic dispatch (ED) problems with nonconvex cost functions using particle swarm optimization (PSO). Although the PSO is easy to implement and has been empirically shown to perform well on many optimization problems, it may easily get trapped in a local optimum when solving problems with multiple local optima and heavily constrained. This paper proposes an improved PSO, which combines the conventional PSO with chaotic sequences (CPSO). The chaotic sequences combined with the linearly decreasing inertia weights in PSO are devised to improve the global searching capability and escaping from local minimum. To verify the feasibility of the proposed method, numerical studies have been performed for two different nonconvex ED test systems and its results are compared with those of previous works. The proposed CPSO algorithm outperforms other state-of-the-art algorithms in solving ED problems, which consider valve-point and multi-fuels with valve-point effects.

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.

Design of Multiplierless 2-D State Space Digital Filters Based on Particle Swarm Optimization (PSO을 이용한 고속 2차원 상태공간 디지털필터 설계)

  • Lee, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.797-804
    • /
    • 2013
  • This paper presents an efficient design method of multiplierless 2-D state space digital filter based on a particle swarm optimization(PSO) algorithm. The design task is reformulated as a constrained minimization problem and is solved by our newly developed PSO algorithm. To ensure the stability of the designed 2-D state space digital filters, a stability strategy is embedded in the basic PSO algorithm. The superiority of the proposed method is demonstrated by several experiments. The results show that the approximation error and roundoff noise of the resultant filters are better than those of the digital filters which designed by recently published filter design methods. In addition, the designed filters with power-of-two coefficients have only about 1/4 computational burden of the 2-D digital filters designed in the 2's complement binary representation.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization

  • Das, Subhajit;Dhang, Nirjhar
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.345-368
    • /
    • 2020
  • The present work proposes a self-controlled multi-stage optimization method for damage identification of structures utilizing standard particle swarm optimization (PSO) algorithm. Damage identification problem is formulated as an inverse optimization problem where damage severity in each element of the structure is considered as optimization variables. An efficient objective function is formed using the first few frequencies and mode shapes of the structure. This objective function is minimized by a self-controlled multi-stage strategy to identify and quantify the damage extent of the structural members. In the first stage, standard PSO is utilized to get an initial solution to the problem. Subsequently, the algorithm identifies the most damage-prone elements of the structure using an adaptable threshold value of damage severity. These identified elements are included in the search space of the standard PSO at the next stage. Thus, the algorithm reduces the dimension of the search space and subsequently increases the accuracy of damage prediction with a considerable reduction in computational cost. The efficiency of the proposed method is investigated and compared with available results through three numerical examples considering both with and without noise. The obtained results demonstrate the accuracy of the present method can accurately estimate the location and severity of multi-damage cases in the structural systems with less computational cost.

Development of the Estimating Equation for Children's High-Exposure to Habitat's Magnetic Field using Particle Swarm Optimization (Particle Swarm Optimization을 이용한 소아고노출 생활자계 추정식 개발)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1085-1092
    • /
    • 2010
  • This paper describes the development of estimating equation for under 16 aged children's exposure to habitat's magnetic field for 24 hours by using particle swarm optimization(PSO) algorithm, which was carried out by using the measured database collected from the exposure survey to Korean habitat's magnetic field as to under 16 aged Korean students such as preschooler, children in elementary school, and children in middle school. Sex, age, residence type, size of habitation site, distance from power line, and power transmission voltage are used as the input data of estimating 24 hour's personal exposure to magnetic field. And distribution of 24 hour's personal exposure to magnetic field, exposure characteristic to magnetic field, and exposure characteristic to magnetic field according to special conditions, are analyzed for under 16 aged children.

Optimal Capacitor Placement Considering Voltage-stability Margin with Hybrid Particle Swarm Optimization

  • Kim, Tae-Gyun;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.786-792
    • /
    • 2011
  • The present paper presents an optimal capacitor placement (OCP) algorithm for voltagestability enhancement. The OCP issue is represented using a mixed-integer problem and a highly nonlinear problem. The hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the OCP problem. The HPSO algorithm combines the optimal power flow (OPF) with the primal-dual interior-point method (PDIPM) and ordinary PSO. It takes advantage of the global search ability of PSO and the very fast simulation running time of the OPF algorithm with PDIPM. In addition, OPF gives intelligence to PSO through the information provided by the dual variable of the OPF. Numerical results illustrate that the HPSO algorithm can improve the accuracy and reduce the simulation running time. Test results evaluated with the three-bus, New England 39-bus, and Korea Electric Power Corporation systems show the applicability of the proposed algorithm.

Generating unit Maintenance Scheduling based on PSO Algorithm (PSO알고리즘에 기초한 발전기 보수정지)

  • Park, Young-Soo;Kim, Jin-Ho;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.222-224
    • /
    • 2006
  • This paper addresses a particle swarm optimization-based approach for solving a generating unit maintenance scheduling problem(GMS) with some constraints. We focus on the power system reliability such as reserve ratio better than cost function as the objective function of GMS problem. It is shown that particle swarm optimization-based method is effective in obtaining feasible schedules such as GMS problem related to power system planning and operation. In this paper, we find the optimal solution of the GMS problem within a specific time horizon using particle swarm optimization algorithm. Simple case study with 16-generators system is applicable to the GMS problem. From the result, we can conclude that PSO is enough to look for the optimal solution properly in the generating unit maintenance scheduling problem.

  • PDF

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.