• Title/Summary/Keyword: particle size effect

Search Result 1,969, Processing Time 0.032 seconds

Effect of Operating Parameters on Microbial Desulfurization of Coal by Acidithiobacillus ferrooxidans. (Acidithiobacillus ferrooxidans에 의한 생물학적 석탄탈황에 미치는 조업인자의 영향)

    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.400-407
    • /
    • 2003
  • In microbial coal desulfurization process (MCDP) by using Acidithiobacillus ferrooxidans, the effect of process variables on pyritic sulfur removal efficiency has been investigated. The inhibitory effect of toxic materials contained in coal matrix on the activity of desulfurizing bacteria have been evaluated in coal extracts, and the results showed that the method was useful to evaluate the applicability of a coal which is to be desulfurization to MCDP. The removal efficiency increased with decreasing particle size and decreases with increasing pulp density, but has no significant influence of particle size and pup densities at high pulp densities over 20 wt%. The mass transfers of gaseous nutrients such as oxygen and carbon dioxide into coal slurry with various pulp densities and coal particle size has been studied in an airlift bioreactor. Mass transfer coefficient was independent of pulp density in coal slurry with fine particle below 175 $\mu\textrm{m}$, but significantly decreased with increasing pulp density over 225 $\mu\textrm{m}$. The coal particles over 575 $\mu\textrm{m}$ were significantly settled to the bottom of bioreactor resulting in poor mixing. Considering mass transfer, pulp density and coal mixing, an optimal size of coal particle for the microbial coal desulfurization process seems to be about 500 $\mu\textrm{m}$.

A Study on the Sintering and Mechanism of Crystallization Prevention of Alumina Filled Borosilicate Glass (알루미나를 충전재로 첨가한 붕규산염 유리의 소결 및 결정화 방지기구에 대한 연구)

  • 박정현;이상진;성재석
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.956-962
    • /
    • 1992
  • The predominant sintering mechanisms of low firing temperature ceramic substrate which consists of borosilicate glass containing alumina as a filler are the rearrangement of alumina particles and the viscous flow of glass powders. In this system, sintering condition depends on the volume ratio of alumina to glass and on the particle size. When the substrate contains about 35 vol% alumina filler and the average alumina particle size is 4 $\mu\textrm{m}$, the best firing condition is obtained at the temperature range of 900∼1000$^{\circ}C$. The extensive rearrangement behavior occurs at these conditions, and the optimum sintering condition is attained by smaller size of glass particles, too. The formation of cristobalite during sintering causes the difference of thermal expansion coefficient between the substrate and Si chip. This phenomenon degradates the capacity of Si chip. Therefore, the crystallization should be prevented. In the alumina filled borosilicate glass system, the crystallization does not occur. This effect may have some relation with aluminum ions in alumina. For aluminum ions diffuse into glass matrix during sintering, functiong as network former.

  • PDF

Effect of Surfactant on Synthesis of Colloidal Ag Nanoparticles (콜로이드 Ag 나노입자 합성시 계면활성제의 영향)

  • Lee Jong-Kook;Choi Nam-Kyu;Seo Dong-Seok
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.340-347
    • /
    • 2005
  • Silver nanoparticles were synthesized by chemical reduction method from aqueous silver nitrate solution ana hydrazine as a reduction agent. The morphology, particle size and shape were dependent on the mixing method, reaction temperature and time, molar ratio of hydrazine and silver nitrate, the kind of surfactant, and the addition of surfactant. The stability of the colloidal silver was achieved by the adsorption of surfactant molecules onto the particle. Silver nanoparticles have a characteristic absorption maximum at 430 nm under UV irradiation. It was found that the colloid was nanometer m size and formed very stable dispersion of silver. The Ag nanoparticles obtained showed the spherical shape with the size range of 10-30 nm.

Effect of SiC Particle Size on Hot Workability of AA2024/$SiC_P$ Composites (AA2024/$SiC_P$ 복합재료의 열간 가공성에 미치는 강화상 크기의 영향)

  • 고병철;홍흥기;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.81-84
    • /
    • 1997
  • The hot deformation behavior of SiCp/AA2024 composites reinforced with different sizes of SiCp reinforcements (1, 8, 15, 36, and 44${\mu}{\textrm}{m}$) was investigated by hot torsion tests. The hot restoration of the composites depending on the SiCp reinforcements particle size was studied from the effective stress - strain curves. Dynamic recrystallization (DRX) was occurred in the SiCp/AA2024 composites during the hot deformation at 320 - 43$0^{\circ}C$ under a strain rate of 1.0/sec. Also, the critical strain for DRX decreased with decreasing the reinforcement size of SiCp from 44 to 8${\mu}{\textrm}{m}$. The composite reinforced with SiCp of 8${\mu}{\textrm}{m}$ showed the highest flow stress (265 MPa) and the work hardening rate at 32$0^{\circ}C$ under a strain rate of 1.0/sec.

  • PDF

The Effect on the growth of landscaping trees by fixed trampling in brick paved under-surface soil physical properties -Sand bed's thickness & prticle size were setted by experimental variable factors (일정 답압시 보도블럭포장재 하부 토양물리성의 변화가 조경수 생육에 미치는 영향 - 포설모레 두께 및 립경을 실험변이 인자로 설정하여 -)

  • 조재현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.94-103
    • /
    • 1997
  • The purpose of this study is to find out the effects of brick paved under-surface soil physical properties which are changed by fixed trampling. Thus, a sandy loam which is known as a profitable soil for plants is used an experimental soil to study the changes of the soil physical properties. It is related to sand bed's thickness & particle size which are settled by experimental variable factors. According to the variation of sand bed's particle size, bulk density and soil hardness at natural dryed soilcondition result in 0.075~2.00mm>2.00~5.00mm>2.00~8.00mm>5.00~8.00mm, and water content at natural dryed soil condition are observed being insensible change rate from the point that sand thickness is 30~40mm and more sand bed's thickness constructed by the variation of sand bed's thickness.

  • PDF

Design for Thermite Reaction Efficiency Improvement of Nb-Ni Mother Alloy (Nb-Ni 모 합금의 테르밋 반응 효율 향상 방안 설계)

  • Jin Uk Gwon;Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.33-39
    • /
    • 2023
  • In this study, the effect of mixing condition of raw material powders possessing various particle size and particle size distribution on thermite reaction efficiency was investigated. When fine raw powders are used, rather the reaction yield tends to decrease due to agglomeration. In contrast, coarse raw powders make deteriorate the contact area between raw material powders containing Al reducing agent. To ensure the optimal thermite reaction efficiency, it is required to optimize a mixture condition of raw material powders prior to thermite reaction. From the current experiment, the maximum thermite reaction efficiency is 77%, which came from Nb2O5 + NiO +Al mixtures with size distribution from 9.25 to 22.63 ㎛.

Evolution of cometary dust particles to the inner solar system: Initial conditions, mutual collision and final sinks

  • Yang, Hongu;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.48.3-49
    • /
    • 2017
  • Interplanetary space of the solar system contains a large number of dust particles, referred to as Interplanetary Dust Particles (IDPs) cloud complex. They are observable through meteors and zodiacal lights. The relative contribution of possible sources to the IDPs cloud complex was an controversial topic, however, recent research (Yang & Ishiguro, 2015 and references therein) suggested a dominance of cometary origin. In this study, we numerically investigated the orbital evolution of cometary dust particles, with special concerns on different evolutionary tracks and its consequences according to initial orbits, size and particle shape. The effect of dust particle density and initial size-frequency distribution (SFD) were not decisive in total cloud complex mass and mass supply rate, when these physical quantities are confined by observed zodiacal light brightness and dust particle SFD at 1 au. We noticed that, if we assume the existence of fluffy aggregates discovered in the Earth's stratosphere and the coma of 67P/Churyumov-Gerasimenko, the required mass supply rate decreases significantly. We also found out that close encounters with planets (mostly Jupiter) are the dominating factor of the orbital evolution of dust particles, as the result, the lifetime of cometary dust particles are shorter than Poynting-Robertson lifetime (around 250 thousand years). As another consequence of severe close encounters, only a small fraction of cometary dust particles can be transferred into the orbit < 1 au. This effect is significant for large size particles of ${\beta}$ < 0.01. The exceptional cases are dust particles ejected from 2P/Encke and active asteroids. Because they rarely encounter with Jupiter, most dust particles ejected from those objects are governed by Poynting-Robertson effect and well transferred into the orbits of small semimajor axis. In consideration of the above effects, we directly estimated probability of mutual collisions between dust particles and concluded that mutual collisions in the IDPs cloud complex is mostly ignorable, except for the case of large sized particles from active asteroids.

  • PDF