• Title/Summary/Keyword: particle size effect

Search Result 1,969, Processing Time 0.032 seconds

The effect of steam condensation on the behavior of an hygroscopic aerosol (흡습성 에어로졸의 거동에 미치는 수증기 응축의 영향)

  • Park, J.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.14-22
    • /
    • 1998
  • The growth by steam condensation of an hygroscopic aerosol is investigated using the condensation rate model which has been derived from the mass and heat transfer equations. The present model accounts for both the solute and Kelvin effects. When the hygroscopicity is considered, condensation can occur on hygroscopic seed particles even under subsaturated steam conditions. This study focuses on the effect of hygroscopicity on the evolution of the particle size distribution and decay of the total aerosol concentration. It is found that hygroscopicity causes the particle size distribution to rapidly move upward even in a very short time, resulting in substantially higher decay of the total aerosol concentration than the case without considering hygroscopicity.

  • PDF

Mechanical Pretreatment of Municipal Waste Incineration Ash for Recovering Heavy Metals by the Horizontal Gyration Method

  • Park, Joonchul;Kaoru Masuda;Yamaguchi Hiroshi;Shigehisa Endoh
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.664-667
    • /
    • 2001
  • Segregation of binary particle systems in a horizontally gyrated bed has been experimentally studied to recover the heavy metals from municipal waste incineration (MWI) ash. Differences in density and size had less effect on segregation. Effective segregation took place under the centrifugal effect of 1 or less for any particle size ratio. Zn, Cu and Pb were concentrated in the upper side of bed by the horizontal vibration. However, there was less change in concentration for other metals such as Mg, Al and Fe etc. The separation system with the horizontal gyrating separator proved to be an effective method for the pretreatment of recovering Zn, Cu and Pb from incineration residues.

  • PDF

Effect of Induced Voltage on Spray Characteristics of Piezo Actuated Diesel Injector (인가전압이 디젤 피에조 인젝터의 분무 특성에 미치는 영향)

  • Lee, Jin-Woo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.99-106
    • /
    • 2010
  • A piezo-driven injector was applied with a purpose to evaluate the effect of induced voltage on spray characteristics. For this, injection rate, macroscopic imaging, ambient gas entrainment and particle sizing were carried out. It was shown that initial slope of injection rate was steeper as induced voltage increased, while slope of injection rate became mostly constant with fully opened needle. From macroscopoic imaging, longer spray tip penetration was produced with higher induced voltage. Moreover, wider spray angle was detected in the early stage of spray development, when higher induced voltage was applied. Ambient air entrainment rate was increased and particle size was reduced with higher induced voltage.

Effect of Mineralizer Concentration and Starting Materials on the Characteristics of PZT Powders by Hydrothermal Process (수열합성법으로 제조된 PZT 분말의 특성에 미치는 광화제 농도와 출발물질의 영향)

  • Yang, Beom-Seok;Yun, Ki-Seok;Park, Young-Chul;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.743-748
    • /
    • 2005
  • The effect of reaction parameters in the characteristic of $Pb(Zr_{0.52} Ti_{0.48})O_3$ powders by hydrothermal process was investigated in this study. In the preparation of PZT, the types of starting material and concentration of mineralizer on phase fraction and morphology was investigated respectively. Regardless the types of Pb precursor, PZT was able to synthesize ranging from 7 to 20 on KOH concentration and from 13.01 to 13.55 on pH of solution. The particle size of the PZT powders can be controlled by the mineralizer concentration and various types of precursor.

Effect of Composition Variation and Particle Size of a Bristol Glaze (브리스톨釉藥에 있어서의 組成과 粒度의 影響)

  • Eung Keuk Lim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.144-152
    • /
    • 1963
  • A study was made of the effect of composition changes and particle size on appearance of raw bristol glazes fired at cones 5, 8, and 11. Alumina and silica, alkali and lime variations were made to get some of the more promising glazes determining maturing ranges, modulus of rupture, and other factors such as gloss, smoothness, opacity, eggshelling, crazing, pinholing and crawling for each glaze. Modulus of rupture was measured for the glazes fired at only cone 11.

  • PDF

Effect of particle size of naked oat flours on physicochemical and antioxidant property (쌀귀리 가루의 입도별 이화학적 특성 및 항산화 활성)

  • Jun, Hyun-Il;Yoo, Sun-Hee;Song, Geun-Seoup;Kim, Young-Soo
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.965-974
    • /
    • 2017
  • This study was carried out to investigate the effect of particle size of naked oat flour (NOF) on physicochemical property and antioxidant activity. The NOF was passed through $250{\mu}m$ and $160{\mu}m$ size sieves to obtain three fractions (fraction A: $250{\mu}m$ or more, fraction B: $160-250{\mu}m$, and fraction C: $160{\mu}m$ or less). Moisture, crude protein, crude fat, and crude ash contents of NOF were 8.4, 15.7, 10.0, and 1.8%, respectively, and these contents were increased as the particle size of NOF decreased. The mineral and free amino acid contents of NOF also had a similar tendency. The contents of total starch, amylose, starch damage, total dietary fiber, ${\beta}$-glucan, total phenolics, and flavonoids in NOF were 56.4%, 21.4%, 11.7%, 11.0%, 4.7%, $237.8{\mu}g/g$ and $90.9{\mu}g/g$, respectively. As the particle size of NOF decreased, total starch, amylose, and starch damage contents increased, whereas total dietary fiber, ${\beta}$-glucan, total phenolic and flavonoid contents decreased. Also, three antioxidant activities of NOF were closely correlated with their total phenolics and flavonoids contents, showing high correlation coefficient values ($R^2=0.87$ and 0.81, respectively).

Model for the Inertial Focusing of Particles Using an Atmospheric Aerodynamic Lens (상압 공기역학적 렌즈의 입자 관성집속 모델)

  • Lee, Jin-Won;Lee, Min-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.315-321
    • /
    • 2001
  • Aerodynamic lenses are widely used in generating particle beams of high density and small diameter, but analytical or modeling studies are limited only in the free molecular regime. In this study, it is shown that generating particle beam is also possible in atmospheric pressure range, and the mechanism of generating particle beam using an orifice is analysed into three different parts : fluid dynamic contraction, diffusional defocusing, and inertial focusing. In laminar flow conditions, the diffusional defocusing effect can be neglected, and the effects of inertial focusing can be expressed in terms of the orifice size and Stokes number. Numerical experiments are done for two different orifices, d/D=1/5 and 1/10 and particle diameter d(sub)p=1-10 ㎛. The results for two different orifices can be made into a single curve when a modified Stokes number is used. The inertial focusing effect diminishes when the modified Stokes number becomes smaller than 10(sup)-2.

Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing

  • Rahmani, Hamidreza;Panah, Ali Komak
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2020
  • The long-term behavior of rockfill material used in the construction of infrastructures such as dams is of great significance. Because of concerns about the application of weak rockfill material in dam construction, further experimental studies on the behavior of these materials are required. In this study, laboratory experiments were performed to investigate the one-dimensional deformation and particle breakage of the weak rockfill material under stress. A one-dimensional compression apparatus was designed and developed for testing of rockfill materials of different maximum particle sizes (MPSs). The compression tests were performed under dry, wet and saturated conditions on samples of rockfill material obtained from a dam construction site in Iran. The results of the experiments conducted at the specimen preparation stage and the 1D compression tests are presented. In weak rockfill, the effect of the addition of water on the behavior of the material was uncertain as there were both an increases and decreases observed in particle breakage. Increasing the MPS of the weak rockfill materials increased particle breakage, which was similar to the behavior of strong rockfill material. In all of the MPSs examined, the settlement of specimens under wet conditions was higher than that observed under dry conditions. Also, the greatest deformation occurred during the first hour of loading.

Effect of Particle Size of Zinc Oxides on Cytotoxicity and Cell Permeability in Caco-2 Cells

  • Chang, Hyun-Joo;Choi, Sung-Wook;Ko, Sang-Hoon;Chun, Hyang-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.174-178
    • /
    • 2011
  • The cell permeability and cytotoxic effects of different-sized zinc oxide (ZnO) particles were investigated using a human colorectal adenocarcinoma cell line called Caco-2. Morphological observation by scanning electron microscopy revealed that three zinc oxides with different mean particle sizes (ZnO-1, 20 nm; ZnO-2, 90~200 nm; ZnO-3, $1\sim5\;{\mu}m$) tended to aggregate, particularly in the case of ZnO-1. When cytotoxicities of all three sizes of zinc oxide particles were measured at concentration ranges of $1\sim1000\;{\mu}g$/mL, significant decreases in cell viability were observed at concentrations of $50\;{\mu}g$/mL and higher. Among the three zinc oxides, ZnO-1 showed the lowest viability at $50\;{\mu}g$/mL in Caco-2 cells, followed by ZnO-2 and ZnO-3. The permeate concentration of ZnO-1 from the apical to the basolateral side in the Caco-2 model system after four hours was about three-fold higher than that of either ZnO-2 or ZnO-3. These results demonstrated that ZnO-1, with a 20 nm mean particle size, had poorer viability and better permeability in Caco-2 cells than ZnO-2 and ZnO-3.

Effect of Ash Content on Unburned Carbon and NOx Emission in a Drop Tube Furnace (DTF 를 이용한 석탄 회분 함량에 따른 미연분 및 NOx 배출 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;An, Ke-Ju;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.963-969
    • /
    • 2014
  • Four coal sources that had different ash contents were evaluated in a drop tube furnace (DTF). Combustion experiments were conducted by using several sources with different particle sizes and excess air ratios under air-staging conditions to determine the optimized combustion conditions of high-ash coal, with an emphasis on the combustion efficiency and NOx emissions. The results show that the higher ash content results in a large amount of carbon remaining unburned, and that this effect is dominant when the largest particle size is used. Furthermore, the ash content of coal does affect the Char-NOx concentration, which decreases with the particle size. The results of this study suggest that an air-staged system can be useful to reduce the NOx emissions of high-ash coal and that control of the air stoichiometric ratio of the primary combustion zone (SR1) is effective for reducing NOx emissions, especially by considering unburned carbon contents.