• Title/Summary/Keyword: particle size control

Search Result 608, Processing Time 0.035 seconds

THE LASER-BASED AGGREGATE SCANNING SYSTEM: CURRENT CAPABILITIES AND POTENTIAL DEVELOPMENTS

  • Kim, Hyeong-Gwan;Rauch, Alanf;Haas, Carl T.
    • Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.48-54
    • /
    • 2003
  • An automated system for scanning and characterizing unbound aggregates, called the 'Laser-based Aggregate Scanning System'(LASS), has been developed at the University of Texas at Austin. The system uses a laser profiler to acquire and analyze true three-dimensional data on aggregate particles to measure various morphological properties. Tests have demonstrated that the system can rapidly and accurately measure grain size distribution and dimensional ratios, and can objectively quantify particle shape, angularity, and texture in a size invariant manner. In its present state of development, the LASS machine is a first-generation, laboratory testing device. With additional development, this technology is expected to provide high-quality, detailed information for laboratory and on-line quality control during aggregate production.

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • Kim, M.S.;Yoshimoto, Mamoru;Koinuma, Hideomi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles by the He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient gas pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Fabrication of various Si particle by Pulsed Laser Ablation (PLA법에 의한 Si 미립자 제작)

  • ;Mamoru Yoshimoto;Hideomi Koinuma
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.121-125
    • /
    • 2001
  • We study the feasibility of synthesizing Si particles using PLA method. In the previous studies, it was possible to control the size of Si nanoparticles bythe He gas pressure. In this study, we fabricated sub-micron size Si particles with various shapes such as conical, hexagonal, and ring by controlling not only the ambient as pressure but also the laser energy density. Furthermore, we found that the conical Si particles were uniform-sized and had step shape when observed from FE-SEM and AFM. The conical Si particle has the same crystal structure as the bulk single crystalline Si by the analysis of the Raman scattering. It is shown that the relationship between the laser energy density and the He gas pressure inside the chamber affects the shape of the Si particle.

  • PDF

Visualization of Scattered Plasma-based Particle Acceleration Data (산포된 플라즈마 기반의 가속입자 자료 가시화)

  • Shin, Han Sol;Yu, Tae Jun;Lee, Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 2015
  • Particle accelerator has mainly used in nuclear field only because of the large scale of the facility. However, since laser-plasma particle accelerator which has smaller size and spends less cost developed, the availability of this accelerator is expended to various research fields such as industrial and medical. This paper suggests a visualization system to control the laser-plasma particle accelerator efficiently. This system offers real-time 3D images via convert HDF file comes from plasma data obtained from PIC simulation into OpenGL texture type to analyse and modify plasma data. After that, it stores high-resolution rendering images of the data with external renderer hereafter.

Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method (Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향)

  • Kim, Suk-Bong;Lee, Dae-Sik;Lee, Duk-Dong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2001
  • When particles are dissolved in solution, they have different zeta-potentials depending on pH. Zeta-potential has an influence on particle separation, which can control particle size. And the size of $WO_3$ particle affects the sensitivity of $WO_3$ sensor for detecting NO gas. Therefore we study influence of pH on NO-sensing $WO_3$ gas sensor fabricated by Sol-Coprecipitation method. As pH increases from 2 to 7, dynamic mobility of $WO_3$ precursor was increased. When pH was 7, it showed the largest distribution separation. It means when pH is 7, we can make $WO_3$ powder which has smaller particle size. And it is confirmed by particle size analysis of $WO_3$ powder, X-ray diffration result of $WO_3$ sensing layer and surface morphology. It also affect NO sensing characteristics of $WO_3$ gas sensor. The sensing film synthesized at pH 7 showed the largest sensitivity.

  • PDF

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Effects of the Addition of Metallic Salts and Polyhydric Alcohols on the Formation and the Triboelectric Charge of Zinc Complex-compound Particle (아연 착화합물의 입자형성 및 마찰대전량에 미치는 금속염 및 다가알코올 첨가의 영향)

  • In, Se-Jin
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2013
  • The experiments have been performed to obtain zinc complex compound with smaller particle sizes, which is used as a charge control agent in manufacturing toner. Metallic salts and polyhydric alcohols have been studied to investigate their effects on the formation and the triboelectric charge of zinc complex-compound particle with different sizes. Reactants such as zinc chloride and 3,5-di-tert.-butyl salicylic acid have been used to form the complex compound. Polyethylene glycol (PEG-300), glycerin and ethylene glycol have been added into the zinc chloride solution beforehand to lower the reaction rate in the formation of zinc complex-compound. Aluminium(III) chloride has been mixed in the zinc chloride solution beforehand to restrain the particle size from growing. When PEG-300 and aluminium(III) chloride are used to lower the reaction rate and to restrain the particle size from growing, the average particle size of zinc complex compound decreases from $5.28{\mu}m$ to $2.33{\mu}m$, which was 44.1% of $5.28{\mu}m$.

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF) (침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석)

  • Choi, Jaeyeong;Kim, Do-Gyun;Jung, Euo Chang;Kwen, HaiDoo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.