• 제목/요약/키워드: particle size analyzer

검색결과 359건 처리시간 0.026초

마이크로에멀젼을 이용한 은 나노입자의 합성 (Synthesis of Silver Nanoparticles by Microemulsion)

  • 윤인영;박흥조;곽광수;정노희
    • 한국응용과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.118-124
    • /
    • 2003
  • Silver nanoparticles was synthesized by the method of W/O microemulsions with AOT (bis(2-ethylhexyl) sodium sulfosuccinate). The nucleation particle growth and aggregation was controlled by the droplet exchange process. The intermicellar exchange reaction is varied by changing the AOT and the $H_2O$ concentration. The synthesized W/O microemulsions was found to give the nanoparticles, which was confirmed by SEM, TEM, particle-size-analyzer, and UV-spectrometer. The most stable particles was obtained at 0.056 mole AOT solution, and the particle size distribution was found in the range from 27 to 31 nm. The mean particle size was reduced by adding Tween 20 significantly, and distribution was found from 14 to 16 nm. And, It's size was reduced by cosurfactants as toluene and benzyl alcohol. In case of toluene and benzyl alcohol, the range of particle size was found 7${\sim}$11 nm and 8${\sim}$12 nm.

하천 및 호소 퇴적물 입도분석 방식의 비교와 입도에 따른 중금속물질의 분포경향 (Comparison of Particle Size Analysis and Distribution of Heavy Metals in River and Lake Sediments)

  • 오형석;신원식;김준하;황인성;허진;신현상;오정은;허인애;김영훈
    • 한국지반환경공학회 논문집
    • /
    • 제11권5호
    • /
    • pp.15-23
    • /
    • 2010
  • 한강, 낙동강, 영산강, 금강의 하천 및 호소퇴적물을 대상으로 건식체질법, 습식체질법, 광산란법(PSA) 등의 입도분석법을 비교연구 하였다. 건식체질법의 경우 건조과정에서 발생하는 엉김현상에 의해 오차가 크게 발생하며 이러한 현상은 호소시료의 경우 두드러지게 나타났다. 습식체질법은 건식체질법에 비해 복잡하고 노동력이 보다 많이 필요하지만 정확한 분석이 가능하며 PSA의 경우에도 습식체질과 유사한 경향을 나타내었다. 엉김현상을 방지하기 위한 동결건조 및 과산화수소수에 의한 유기물의 산화/동결건조의 경우 엉김현상을 일부 개선할 수 있었으나 여전히 습식체질에 비하여 미세입자의 분율이 적게 나타났다. 입도별 중금속의 용출량 및 함유량이 조사되었으며 예상된 바와 같이 호소 및 하천시료 모두 미세입자에서 높은 농도의 중금속이 용출되었다. 퇴적물의 관리에 있어서 정확한 입도분석법의 사용과 미세입자에 대한 관리가 보다 중요하다.

Influence of Carbon Black Contents and Rubber Compositions on Formation of Wear Debris of Rubber Vulcanizates

  • Choi, Sung-Seen;Yang, Seong Ryong;Chae, Eunji;Son, Chae Eun
    • Elastomers and Composites
    • /
    • 제55권2호
    • /
    • pp.108-113
    • /
    • 2020
  • Wear particles of the model tread compounds for bus and truck tires were made using a laboratory abrasion tester and characterized based on their size distributions, shapes, and crosslink densities. The influence of the carbon black contents and rubber compositions (NR= 100 and NR/BR= 80/20) on the production of wear particles was investigated. The wear particles were separated according to size using a sieve shaker. The shape properties of the wear particles were analyzed using an image analyzer and scanning electron microscopy (SEM). Their shapes were observed as tiny stick cookies or sausages with bumpy surfaces. The particle size distribution tended to be smaller with increasing carbon black content. Moreover, the particle size distributions of the NR = 100 samples were larger than that of the NR/BR blend samples. There were different filaments in the wear particles. The filament diameters tended to be thinner with increasing carbon black content. The crosslink density increased with increasing carbon black content, and the crosslink densities of the NR= 100 samples were lower than those of the NR/BR blend ones. The particle size distribution tended to be smaller with increasing crosslink density. Based on the experimental results, the wear particles can be produced by detaching debris from the main body through repetitive strain and recovery.

졸-겔법을 이용한 γ-Al2O3 합성 시 PVA와 HNO3 첨가에 따른 입자크기 제어 (Particle Size Control by the Addition of PVA and HNO3 in γ-Al2O3 Synthesis Using by Sol-Gel Method)

  • 엄명헌;김나은;하범용
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.537-543
    • /
    • 2019
  • 세라믹 재료 중 알루미나(Al2O3)는 산업에서 널리 사용되는 세라믹 재료로서 최근의 기술발전에 따라 재료 크기가 작아지고 이에 따른 특성이 다양하여 그 중요성이 더해 가고 있다. 본 연구에서는 다양한 알루미늄 알콕사이드 중 Aluminum isopropoxide(AIP)를 출발 원료물질로 하여 졸-겔(Sol-Gel)법에 의해 가수분해 및 해교과정을 거쳐 boehmite 졸을 제조하고 이후 건조 및 하소시켜 γ-Al2O3를 제조하였다. 이러한 제조 과정 중 입자의 응집현상을 방지하기 위해 9,000 ~ 10,000, 31,000 ~ 50,000, 89,000 ~ 98,000, 130,000의 분자량을 갖는 4종류의 PVA(Polyvinyl alcohol)를 첨가하고 3종류 질산(0.1, 0.3, 0.5 몰비)을 첨가하여 입자에 미치는 영향을 확인하고자 하였다. 제조된 γ-Al2O3는 X선 회절분석기(XRD), X선 형광분석기(XRF), 입도분석기(PSA), 전계방사 주사전자현미경(FE-SEM) 등의 기기분석을 통하여 결정구조 및 조성, 입자크기, 그리고 입자형상을 확인하였다. 그 결과, 약 98.2 %의 순도를 갖는 γ-Al2O3가 합성되었으며 첨가되는 질산의 첨가비가 높을수록, 그리고 PVA 분자량이 클수록 입자크기가 감소하고 균일성이 높아지는 것을 확인할 수 있었다. 이러한 결과로부터, PVA와 질산의 첨가비 조절에 따라 γ-Al2O3의 제조공정 중 입자크기 제어가 가능할 것으로 사료된다.

알콕사이드로부터 $Al_2O_3-SiC$ 복합재료의 제조 및 특성 (Synthesis and Properties of $Al_2O_3-SiC$ Composites from Alkoxides)

  • 이홍림;김규영
    • 한국세라믹학회지
    • /
    • 제30권2호
    • /
    • pp.123-130
    • /
    • 1993
  • Dispersed type Al2O3-SiC composite powders were synthesized from Al-isopropoxide (Al(i-OC3H7)3) and Si(OC2H5)4 precursors by hydrolysis of mixed alkoxides and carbothermal reaction method. The characteristics of the synthesized (dispersed type) Al2O3-SiC composite powders were investigated using XRD, SEM, TEM, BET and particle size analyzer. Carbothermal reaction to produce Al2O3-SiC composite was completed in 10h at 135$0^{\circ}C$ on 3~4㎤/s (0.21~0.28cm/s) of H2 flow rate and about 1/1 of carbon/oxides(=SiO2+Al2O3) molar ratio. The synthesized powders were observed to have the mean particle size range of 0.4~1.26${\mu}{\textrm}{m}$ and showed finer particle size with increasing SiC content.

  • PDF

자가치료용 마이크로캡슐 특성에 영향을 미치는 제작공정 연구 (Study on Manufacturing Process Variables affecting on Characteristics of Autonomic Microcapsules)

  • 윤성호;박희원;소진호;홍순지;이종근
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.169-172
    • /
    • 2003
  • Manufacturing process for autonomic microcapsules was introduced and autonomic microcapsules were manufactured by varying with various manufacturing process variables. Urea-formaldehyde resin was used for the wall of microcapsules and DCPD (dicyclopentadiene) was used for the self-healing agent. The characteristics of these microcapsules was evaluated through a particle size analyaer, an optical microscope, and a TGA. The various manufacturing process variables, such as pH and agitation speed of the emulsified solution, were considered to focus in this study. According to the results, the particle size distributions were affected on the agitation speed of the emulsified solution, and the thermal stability was influenced by pH of the emulsified solution.

  • PDF

Synthesis and Characterization of Al2O3/ZrO2, Al2O3/TiO2 and Al2O3/ZrO2/TiO2 Ceramic Composite Particles Prepared by Ultrasonic Spray Pyrolysis

  • Shim, In-Soo;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1127-1134
    • /
    • 2002
  • Fine ceramic particles of zirconia toughened alumina (ZTA), titania toughened alumina (TTA), and zirconia-titania toughened alumina (ZTTA) have been synthesized by ultrasonic spray pyrolysis (USP) at various temperatures from starting salt solutio ns of various compositions aiming for the development of catalytic material. These particles were characterized for properties such as shape, size and size distribution, diffraction pattern, and chemical and phase composition of elements by scanning electron microscopy (SEM), particle size analyzer (PSA), x-ray diffraction (XRD), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Chemical compositions and sizes of ceramic composites have been controled by the stoichiometry of salt solutions and the flow rate of spraying solutions. The optimum experimental conditions for the various composite particle syntheses have been proposed.

혼합효과가 DMA와 CPC를 이용한 입자분포 측정에 미치는 영향에 관한 연구 (Study on the Influence of Mixing Effect to the Measurement of Particle Size Distribution using DMA and CPC)

  • 이윤수;안강호;김상수
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.326-333
    • /
    • 2003
  • In the measurement using DMA and CPC in series, there is some time delay for particles classified in DMA to detect in CPC. During this time, the DMA time-response changes due to the velocity profile of sampling tube and the diffusion of particles in the volume that exists between the DMA exit and the detector of ultra-fine CPC. This is called mixing effect. In the accelerated measurement methods like the TSI -SMPS, the size distribution is obtained from the correlation between the time-varying electrical potential of the DMA and the corresponding particle concentrations sampled in DMA. If the DMA time -response changes during this delay time, this can cause the error of a size distribution measured by this accelerated technique. The kernel function considering this mixing effect using the residence time distribution is proposed by Russell et al. In this study, we obtained a size distribution using this kernel to compare to the result obtained by the commercial accelerated measurement system, TSI -SMPS for verification and considered the errors that result from the mixing effect with the geometric mean diameters of originally sampled particles, using virtually calculated responses obtained with this kernel as input data.

Investigation of Thermal Conductivity and Convective Heat Transfer of Alumina Nanofluids under Laminar Flow

  • Seung-Il, Choi;Hafizur-Rehman, Hafizur-Rehman;Eom, Yoon-Sub;Ji, Myoung-Kuk;Kim, Jun-Hyo;Chung, Han-Shik;Jeong, Hyo-Min
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.78-86
    • /
    • 2013
  • In this research, dilute colloidal suspension alumina nanofluids were prepared by dispersing alumina nanoparticles in DI water and ethylene glycol as base fluids. Particle size analyzer and TEM test results revealed that the size of the alumina nanofluids(3wt% and 5wt%) with dispersion time 3hrs were 46nm and 60nm respectively. Thermal conductivity of these alumina nanofluids was measured by means of hot wire technique using a LAMBDA system. For water based alumina nanofluids, thermal conductivity enhancement was from 2.29% to 3.06% with 5wt% alumina at temperatures ranging from 15 to $40^{\circ}C$. Whereas in case of ethylene glycol based alumina nanofluids under the same temperature range, thermal conductivity enhancement was from 9.6% to 10% with 5wt% alumina. An enhancement of 37% average convective heat transfer was achieved with 5wt% alumina nanofluids at Re of 1,100.

증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구 (Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method)

  • 김휘동;안지영;김수형
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF