• Title/Summary/Keyword: particle number

Search Result 1,502, Processing Time 0.028 seconds

Deposition of Polydisperse Particles in a Falkner-Skan Wedge Flow (포크너-스캔 경계층유동에서의 다분산 입자부착에 대한 연구)

  • 조장호;황정호;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2342-2352
    • /
    • 1995
  • Deposition of flame-synthesized silica particles onto a target is utilized in optical fiber preform fabrication processes. The particles are convected and deposited onto the target. Falkner-Skan wedge flow was chosen as the particle laden flow. Typically the particles are polydisperse in size and follow a lognormal size distribution. Brownian diffusion, thermophoresis, and coagulation of the particles were considered and effects of these phenomena on particle deposition were studied. A moment model was developed in order to predict the particle number density and the particle size distribution simultaneously. Particle deposition with various wedge configurations was examined for conditions selected for a typical VAD process. When coagulation was considered, mean particle size and its standard deviation increased and particle number density decreased, compared to the case without coagulation. These results proved the fact that coagulation effect expands particle size distribution. The results were discussed with characteristics of thermal and diffusion boundary layers. As the boundary layers grow in thickness, overall temperature and concentration gradients decrease, resulting in decrease of deposition rate and increase of particle residence time in the flow and thus coagulation effect.

Model for the Inertial Focusing of Particles Using an Atmospheric Aerodynamic Lens (상압 공기역학적 렌즈의 입자 관성집속 모델)

  • Lee, Jin-Won;Lee, Min-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.315-321
    • /
    • 2001
  • Aerodynamic lenses are widely used in generating particle beams of high density and small diameter, but analytical or modeling studies are limited only in the free molecular regime. In this study, it is shown that generating particle beam is also possible in atmospheric pressure range, and the mechanism of generating particle beam using an orifice is analysed into three different parts : fluid dynamic contraction, diffusional defocusing, and inertial focusing. In laminar flow conditions, the diffusional defocusing effect can be neglected, and the effects of inertial focusing can be expressed in terms of the orifice size and Stokes number. Numerical experiments are done for two different orifices, d/D=1/5 and 1/10 and particle diameter d(sub)p=1-10 ㎛. The results for two different orifices can be made into a single curve when a modified Stokes number is used. The inertial focusing effect diminishes when the modified Stokes number becomes smaller than 10(sup)-2.

Development of Particle Deposition System for Cleaning Process Evaluation in Semiconductor Fabrication (반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발)

  • Nam, Kyung-Tag;Kim, Ho-Joong;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3168-3172
    • /
    • 2007
  • As the minimum feature size decreases, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT and designed a particle deposition system which consists of scanning mobility particle sizer (SMPS) and deposition chamber. Charged monodisperse particles are generated using SMPS and deposited on the wafer by electrostatic force. The experimental results agreed with the simulation results well in terms of particle number and deposition area according to particle size, flow rate and deposition voltage.

  • PDF

Design and Performance Test of Fungal Aerosol Generator using Vibration Method (진동 방식을 이용한 곰팡이 공기 부유화 장치의 설계 및 성능 평가)

  • Ahn, Ji-Hye;Lee, Sang-Gu;Park, Chul Woo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.143-150
    • /
    • 2012
  • Fungal particles have been known to aggravate indoor air quality. To develop fungal particle cleaning devices requires a well-controlled generator of fungal aerosol particles. In this study, a novel fungal aerosol generator was designed and tested for anti-fungal experiment. Cladosporium cladosporioides was selected as test fungal particle. After aerosolization, the number concentration and the size of particles were measured by aerodynamic particle sizer. The number concentration depended on the vibration strength and vibration period of the designed fungal aerosol generator. For the vibration strength of 10volt and the period of 10 sec (5 sec on and 5 sec off), the stable particle generation with concentration of 10#/cm3 was maintained during 35 minutes.

Stochastic Analysis of the Diamond Particle Distribution on the Surface of Circular Diamond Saw Blade (원형 다이아몬드 톱의 세그먼트 표면에서의 다이아몬드 입자 분포의 확률적인 해석)

  • 이현우;변서봉;정기정;김용석
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2003
  • Distributions of diamond particles protruding on the surface of worn diamond segments in circular saw has been investigated. Scanning electron microscope was used to examine the worn ,surface and radial saw blade wear and grinding ratio was measured. The number of protruded diamond particle was approximately 50% of the total number of particles, and that was independent of diamond particle concentration and table speed. It was also noted that the inter-particle distance did not follow a symmetric function like Gaussian distribution function, instead it fitted well with a probability density function based on gamma function. The distribution of inter-particle spacing, therefore, was analyzed using a gamma function model.

Continuous Measurements of Size Separated Atmospheric Aerosol Number Concentration in Background Area (대기배경지역 에어로졸의 입경별 수농도 연속 측정)

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.535-543
    • /
    • 2012
  • The aerosol number concentration have measured with an aerodynamic particle sizer spectrometer(APS) at Gosan site, which is known as background area in Korea, from January to September 2011. The temporal variation and the size distribution of aerosol number concentration have been investigated. The entire averaged aerosol number concentration in the size range 0.25~32.0 ${\mu}m$ is about 252 particles/$cm^3$. The number concentration in small size ranges(${\leq}0.5{\mu}m$) are very higher than those in large size ranges, such as, the number concentration in range of larger than 6.5 ${\mu}m$ are almost zero particles/$cm^3$. The contributions of the number concentration to PM10 and/or PM2.5 are about 34%, 20.1% and 20.4% in the size range 0.25~0.28 ${\mu}m$, 0.28~0.30 ${\mu}m$ and 0.30~0.35 ${\mu}m$, respectively, however, the contributions are below 1% in range of larger than 0.58 ${\mu}m$. The monthly variations in the number concentration in smaller size range(<1.0 ${\mu}m$) are evidently different from the variations in range of larger than 1.0 ${\mu}m$, but the variations are appeared similar patterns in smaller size range(<1.0 ${\mu}m$), also the variations in range of larger than 1.0 ${\mu}m$ are similar too. The diurnal variations in the number concentration for smaller particle(<1.0 ${\mu}m$) are not much, but the variations for larger particle are very evident. Size-fractioned aerosol number concentrations are dramatically decreased with increased particle size. The monthly differences in the size-fractioned number concentrations for smaller size range(<0.7 ${\mu}m$) are not observed, however, the remarkable monthly differences are observed for larger size than 0.7 ${\mu}m$.

Development of Simple Bimodal Model for Charged Particle Coagulation (Bimodal 방법을 이용한 하전입자 응집 모델링)

  • Kim, Sang Bok;Song, Dong Keun;Hong, Won Seok;Shin, Wanho
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.27-31
    • /
    • 2014
  • A simple bimodal model has been developed to analyze charged particle coagulation by modifying previously suggested bimdal model for evolution of particle generation and growth. In the present model, two monodisperse modes are used and 40 charge nodes are assigned to each mode to account both change of the particle size and charge distribution. In addition, we also implemented the effect of electrostatic dispersion loss in the present model. Based on the developed model, we analyzed coagulation of asymmetric bipolar charged particles by computing evolutions of particle number concentration, geometric mean diameter of particles, charge asymmetric ratio and geometric standard deviation of particle size distribution for various initial charge asymmetric ratios. The number concentration of asymmetric bipolar charged particles decreases faster than that of neutral particles but that does not give faster growth of particles since the electrostatic dispersion loss overwhelms particle growth by coagulation.

Numerical investigation into particle crushing effects on the shear behavior of gravel

  • Xi Li;Yayan Liu;Guoping Qian;Xueqing Liu;Hao Wang;Guoqing Yin
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.209-219
    • /
    • 2023
  • This paper presents numerical investigations into the particle crushing effect on the shear properties of gravel under direct shear condition. A novel particle crushing model was developed based on the octahedral shear stress criterion and fragment replacement method. A series of direct shear tests were carried out on unbreakable particles and breakable particles with different strengths. The evolutions of the particle crushing, shear strength, volumetric strain behavior, and contact force fabric during shearing were analyzed. It was observed that the number of crushed particles increased with the increase of the shear displacement and axial pressure and decreased with the particle strength increasing. Moreover, the shear strength and volume dilatancy were obviously decreased with particle crushing. The shear displacement of particles starting to crush was close to that corresponding to the peak shear stress got. Besides, the shear-hardening behavior was obviously affected by the number of crushed particles. A microanalysis showed that due to particle crushing, the contact forces and anisotropy decreased. The mechanism of the particle crushing effect on the shear strength was further clarified in terms of the particle friction and interlock.

Analysis of Group Ignition of Pulverized Coal Particles (미분탄의 집단점화 해석)

  • Suh, K.K.;Kim, H.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 1999
  • Pulverized coal is widely used as the source of electrical power generation and industrial processes. Numerical analysis on the transient ignition process of the cloud of pulverized coal particles in various cases is carried out. Particle radius, initial particle temperature, number density are chosen as major parameters that influence the characteristics of ignition and combustion. The result can be summarized as follow. The ignition occurs at the position that is closed to the surface of the cloud. Maximum temperature and velocity appear at ignition point, and the concentrations of gaseous fuel and oxidizer decrease rapidly near the ignition point. The chemical reaction takes place in wider zone as number density and particle radius decrease. The ignition delay is shortest when particle radius is about $50\;{\mu}m$, and tends to be shorter as number density and initial ambient temperature increase.

  • PDF

A NUMERICAL STUDY ON THE CONTROL OF PARTICLE CONCENTRATION DISTRIBUTION IN A PIPE (관에서의 입자농도분포 제어에 관한 수치적 연구)

  • Yi, Min-Young;Yoo, Joo-Sik
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.62-66
    • /
    • 2009
  • The control of particle concentration distribution in a pipe with an orifice and a sheath air is numerically investigated. When using Eulerian approach, there is no great change in the concentration distribution by the shape of orifice and molecular diffusivity. As the Reynolds number becomes small, the effect of orifice on the concentration distribution is decreased. For small Reynolds number, the concentration distribution can be effectively controlled by using a sheath air. The effect of the sheath air on the concentration distribution is increased, as the Reynolds number becomes small.