• Title/Summary/Keyword: particle mixing

Search Result 664, Processing Time 0.024 seconds

Effects of hydrodynamics and coagulant doses on particle aggregation during a rapid mixing

  • Park, Sang-Min;Heo, Tae-Young;Park, Jun-Gyu;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.365-372
    • /
    • 2016
  • The effects of hydrodynamics and alum dose on particle growth were investigated by monitoring particle counts in a rapid mixing process. Experiments were performed to measure the particle growth and breakup under various conditions. The rapid mixing scheme consisted of the following operating parameters: Velocity gradient (G) ($200-300s^{-1}$), alum dose (10-50 mg/L) and mixing time (30-180 s). The Poisson regression model was applied to assess the effects of the doses and velocity gradient with mixing time. The mechanism for the growth and breakup of particles was elucidated. An increase in alum dose was found to accelerate the particle count reduction. The particle count at a G value of $200s^{-1}$ decreased more rapidly than those at $300s^{-1}$. The growth and breakup of larger particles were more clearly observed at higher alum doses. Variations of particles due to aggregation and breakup of micro-flocs in rapid mixing step were interactively affected by G, mixing time and alum dose. Micro-flocculation played an important role in a rapid mixing process.

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF

A Study on the Homogeneity of Powder Mixture (분말약품 혼합의 균일성에 관한 연구)

  • 김길수;이민화
    • YAKHAK HOEJI
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 1977
  • The effects of the particle size on the homogeneity of mixing and segregation of caffeine-lactose (1:99) mixture were studied. Using the two kinds of caffein, milled and unmilled caffein, V-type blender, the degree of mixing according to the particle size was predicted and the experiment on the change of mixedness by mixing time was carried out by the method derived from mixing index theory by Poole et al. and Hersey. the results could be summarized as follows; (1) The homogeneity of mixing was greatly affected by the particle size and the particle size should be reduced to the adepuate level to attain the desirable mixedness. (2) The homogeneity was not proportional to the mixing time and optimum mixing time for caffein-lactose was about 10 minutes. (3) Segregation tendency was increased by the particle size increase and greatly affected by the flow time in the segregation cell.

  • PDF

Estimation of Sedimentation and Particle Mixing Rates in Ulleung Basin of the East Sea (Sea of Japan) Using $^7Be,{\;}^{234}Th,{\;}^{210}Pb,{\;}and{\;}^{137}Cs$

  • Kim, Kee-Hyun;Park, Nam-Joon
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.157-165
    • /
    • 2003
  • In order to understand the characteristics of sedimentary environments in Ulleung Basin of the East Sea (Sea of Japan), three sediment cores were taken with a box corer during R/V Tamyang cruise in October 1999. Activities of $^{7}Be,{\;}^{210}Pb,{\;}^{226}Ra,{\;}^{234}Th,{\;}^{238}{\;}and{\;}^{137}Cs$ in sediment samples were determined by non-destructive gamma-ray spectrometry. Rates of sedimentation and particle mixing were estimated by best fitting an advection­diffusion particle mixing model to the data of $^{7}Be,{\;}^{234}Th,{\;}and{\;}^{210}Pb$. Estimated sedimentation rates were 0.06-0.08 cm/yr and particle mixing rates were $0.13-0.65{\;}\textrm{cm}^2/yr$. The use of multiple tracers in our study prevented us from probable up to 38% overestimation of sedimentation rates.

CHAOTIC MIXING IN SQUARE CAVITY FLOW (정사각형 캐비티 유동의 혼돈적 혼합 특성)

  • Le, T.H.V;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.53-57
    • /
    • 2007
  • The quality of chaotic mixing in square cavity flow was studied numerically by CFD simulation and particle tracking technique. The chaotic mixing was generated by using time-periodic electro-osmotic flow. Finite Volume Method (FVM) was employed to get the stretching and folding field in cavity domain. With adjusting the initial condition of concentration distribution, the best values of modulation period and Peclet number which gave us good mixing performance was determined precisely. From $Poicar{\acute{e}}section$and Lyapunov exponents for characteristic trajectories we find that mixing performance also depends on modulation period. The higher value of modulation period, the better mixing performance wag achieved in this case. Furthermore, the results for tracking particle trajectories were also compared between using of Bilinear Interpolation and Higher-order scheme. The values of modulation period for obtaining best mixing effect were matched between using FVM and particle tracking techniques.

  • PDF

Characteristics of Micro Floc in a Rapid Mixing Step at Different Coagulant Dose (급속혼화공정에서 응집제 주입률에 따른 미세입자의 성장특성)

  • Jun, Hang-Bae;Park, Sang-Min;Park, Noh-Back;Jung, Kyung-Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.243-252
    • /
    • 2007
  • Effects of alum dosage on the particle growth were investigated by monitoring particle counts in a rapid mixing process. Kaolin was used for turbid water sample and several other chemicals were added to adjust pH and ionic strength. The range of velocity gradient and mixing time applied for rapid mixing were $200{\sim}300sec^{-1}$ and 30~180 sec, respectively. Particle distribution in the synthetic water sample was close to the natural water where their turbidity was same. The number of particles in the range of $10.0{\sim}12.0{\mu}m$ increased rapidly with rapid mixing time at alum dose of 20mg/L, however, the number of $8.0{\sim}9.0{\mu}m$ particles increased at alum dose of 50mg/L. The number of $14.0{\sim}25.0{\mu}m$ particles at alum dose of 20mg/L was 10 times higher than them at alum dose of 50mg/L. Dominant particle growth was monitored at the lower alum dose than the optimum dose from a jar test at an extended rapid mixing time(about 120 sec). The number of $8.0{\sim}14.0{\mu}m$ particles was lower both at a higher alum doses and higher G values. At G value of $200sec^{-1}$ and at alum dose of 10-20mg/L, residual turbidity was lower as the mixing time increased. But at alum dose above 40mg/L and at same G value, lower residual turbidity occurred in a short rapid mixing time. Low residual turbidity at G value of $300sec^{-1}$ occurred both at lower alum doses and at shorter mixing time comparing to the results at G value of $200sec^{-1}$.

Effect of Rice Straw Steaming Time and Mixing Ratio between Acacia mangium Willd Wood and Steamed Rice Straw on the Properties of the Mixed Particleboard

  • Tran, Van Chu;Le, Xuan Phuong
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This study examined the effects of rice straw steaming time and mixing ratio between rice straw and wood particle on the properties of mixed particle board from Acacia mangium Willd wood and rice straw. Rice straw and Acacia mangium Willd wood were collected in Hanoi, Vietnam. The particle board was three-layer particle board with the structural ratio of 1:3:1. The thickness, density and board size of the particle board were 18 mm, $0.7g/cm^3$, and $800{\times}800{\times}18$ (mm, including trimming), respectively. A resin mixture between commercial Urea-formaldehyde (U-F) adhesive and methylene diphenyl isocyanate (MDI) adhesive was used with a dosage of 12% for the core layer and 14% for the surface layer. In this experimental design, the steaming time for rice straw was 15, 30, 45, 60, and 75 minutes at $100^{\circ}C$. The rice straw-wood mixing ratio was 10, 20, 30, 40, and 50%. The results showed that both mixing ratio and steaming time affect the properties of the particleboard, but the mixing ratio has a stronger impact. A higher mixing ratio and a longer steaming time resulted in a better quality of particleboard. The optimal steaming time for rice straw was 46.12 minutes with the straw-wood mixing ratio of 29.85% with the following characteristics of the particle board: the modulus of rupture (MOR) of 14.64 MPa, internal bond strength (IB) of 0.382 MPa, thickness swelling (TS) of 8.83%, and board density of $0.7-0.7g/cm^3$.

Studies on mixing of pharmaceutical powders

  • Choi, Woo-Sik
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.53-60
    • /
    • 1982
  • The mixing of salicylic acid and wheat starch powders was studied using a V-type mixer. After the optimum operating conditions of the mixer were examined, the mixing characteristics relating to dilution ratio, particle size of active ingradient and addition ratio of lubricants were investigated. The coefficient of variation was expressed by a power law relating to the dilution ratio and the particle size of active ingredient. Furthermore, the comparison of results with the theoretically estimated value of mixing index suggested that the mixing of cohesive pharmacceutical powders is a complex stochastic process and cannot be explained fully by a simple theory based on a complete random mixing.

  • PDF

Fundamental Study of Manufacture Possibility and Composition Ratio of Sludge-Particle Board (슬러지-파티클 보드의 제조(製造) 가능성(可能性) 및 구성비율(構成比率)에 관한 기초연구(基礎硏究))

  • Lee, Phil-Woo;Yoon, Hyoung-Un;Kim, Dae-Jun;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 1993
  • The aim of this research was to manufacture sludge-particle board using paper sludge with wood particle and to investigate physical and mechanical properties of various sludge-particle boards, fabricated with ratios of sludge to particle of 10 to 90, 20 to 80, 30 to 70, 40 to 60 and 50 to 50(oven dry weight based). Sludge-particle boards were manufactured by urea-formaldehyde resin, 0.8 target specific gravity, and 10mm thickness. It was possible to manufacture sludge-particle board as the same processing in the present particleboard manufacturing system. This sludge-particle board have different properties as composition ratios of sludge and particle. And sludge-particle board made from 10 percent to 20 percent of sludge mixing ratio have similar mechanical properties compared with control particleboard. Especially, the sludge-particle board made from 10 percent to 40 percent mixing ratios of sludge have superior to control particleboard in internal bond, screw withdrawal holding strength and modulus of elasticity. In the case of dimensional stability, water absorption was increased and thickness swelling was decreased as increased with sludge mixing proportion. The sludge-particle board made of different mixing ratios of our laboratory design was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF

Strength Properties of Waste-tyre Recycling Concrete (폐타이어 혼입률에 따른 콘크리트 강도 변화에 관한 실험적 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.76-80
    • /
    • 2003
  • There will be a big problem in disposing of waste tie coming from the cars. Because many of these have been thrown away to the field and environmentally polluted. New, We need to find out how to dispose or recycle these waste material. It is thought that recycling this material especially mixing with concrete will be a good idea. This study is focused how each material do its behavior due to the size of waste type particle and its amount into concrete material. 0.4mm-10mm range of particle has been applied to the material : Also, 1.0%, 1.5%, 2.0% range of tyre particle proportion has been applied to make cylinder molds. The concrete mold with waste-tyre particle has vibration-absorbing ability. It is found that 0.4 -0.6mm particle mixing concrete has been more solid organized. And this waste tyre material could be applied to the general concrete, it is found.