• 제목/요약/키워드: particle impact

검색결과 466건 처리시간 0.025초

극대변형 해석을 위한 SPH 수치기법 개발 및 ExLO 코드 연계 (Integration of 3-Dim SPH Scheme into the ExLO Code)

  • 이민형;조영준
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.532-537
    • /
    • 2011
  • This paper describes the development of SPH(Smooth Particle Hydrodynamics) scheme and integration into the multi-material shock physics code(ExLO) for the purpose of the application to the extreme large deformation problems. SPH numerical scheme has been extended into the fluid dynamics and the high-speed impact events, such as space structure protection against space debris and meteorite catering. Like other hydrocodes, SPH scheme also solves the conservation equations with the constitutive equation including equation of state. The benchmark problem, Taylor-Impact test, was simulated and the predictions show good agreements with both the published numerical data and experimental data. Currently, the contact treatment between materials is under development.

표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구 (An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass)

  • 서창민;정성묵;이문환
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

온도변화에 따른 나노 복합재료의 충격거동 (Impact behavior on temperature effect of nano composite materials)

  • 김형진;이정규;고성위
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.561-566
    • /
    • 2015
  • In this study, the effect of temperature effect of the rubber matrix filled with nano sized silica particles composites with silica volume fraction of 19-25% was investigated by the Charpy impact test. The Charpy impact test was conducted in the temperature range from $-40^{\circ}C$ to $0^{\circ}C$. The critical energy release rate GIC of the rubber matrix composites filled with nano sized silica particles was considerably affected by temperature and it was shown that the maximum value was appeared at higher temperature between temperature tested and it was shown that the value of GIC increases as temperature tested increases. The major fracture mechanisms were matrix deformation, silica particle debonding and delamination, microcrack between particles and matrix, and/or pull out between particles and matrix which is ascertained by SEM photographs of Charpy impact surfaces fracture.

라그란지안 기법과 입자완화동력학 기법을 이용한 콘크리트 표적 충돌해석 기법 연구 (A Study on the technique of impact analysis against concrete target using Lagrangian and Smoothed Particle Hydrodynamics)

  • 하동호
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.207-216
    • /
    • 2002
  • In this paper, the study on the behavior of the deformation of brittle material, such as concrete, ceramic, was peformed by comparison of Lagrangian technique and Smoothed Particle Hydrodynamics using commercial nonlinear hydrodynamic numerical program, Autodyn_2D. The effect of SPH technique was proved by investigating the behavior of material deformation, velocity profile and pressure profile.

Paddy Soil Tillage Impacts on SOC Fractions

  • Jung, Won-Kyo;Han, Hee-Suk
    • 한국토양비료학회지
    • /
    • 제40권4호
    • /
    • pp.326-329
    • /
    • 2007
  • Quantifying soil organic carbon (SOC) has long been considered to improve our understanding of soil productivity, soil carbon dynamics, and soil quality. And also SOC could contribute as a major soil management factor for prescribing fertilizers and controlling of soil erosion and runoff. Reducing tillage intensity has been recommended to sequester SOC into soil. On the other hand, determination of traditional SOC could barely identify the tillage practices effect. Physical soil fractionation has been reported to improve interpretation of soil tillage practices impact on SOC dynamics. However, most of these researches were focused onupland soils and few researches were conducted on paddy soils. Therefore, the objective of this research was to evaluate paddy soil tillage impact on SOC by physical soil fractionation. Soils were sampled in conventional-tillage (CT), partial-tillage (PT), no-tillage (NT), and shallow-tillage (ST)plots at the National Institute of Crop Science research farm. Samples were obtained at the three sampling depth with 7.5-cm increment from the surface and were sieved with 0.25- and 0.053-mm screen. Soil organic carbon was determined by wet combustion method. Significant difference of SOC contentwas found among sampling soil depth and soil particle size. SOC content tended to increase at the ST plot with increasing size of soil particle fraction. We conclude that quantifying soil organic carbon by physical soil particle fractionation could improve understanding of SOC dynamics by soil tillage practices.

화염용사 거리에 따른 입자의 거동 및 $Ni_{20}Cr$ 코팅층 특성 연구 (Effect of Flame Spray Distance on Particle Behavior and Morphological Characteristics of $Ni_{20}Cr$ Coated Layers)

  • 이재빈;신동환;이성혁
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.128-133
    • /
    • 2012
  • The present study aims to examine the influence of flame spray distance on the thermal behavior of micro-metal particles and the morphological characteristics of $Ni_{20}Cr$ layers coated on the preheated SCM415 substrates by using the conventional flame spray system. Commercially available nickel-based $Ni_{20}Cr$ particles with a mean diameter of $45{\mu}m$ were used. In addition, CFD simulations using a commercial code (FLUENT ver. 6.3.26) were conducted to estimate temperature and velocity distributions of the continuous and discrete phases before impact on the substrate. From FE-SEM images of coated layers on the substrates, it was observed that as the spray distance decreased, the metal particle morphology showed splash-like patterns and such a short stretch shape, resulting from higher particle momentums and the impact of partially melted particles. Moreover, it was found that the spray distance should be considered as one of important parameters in controlling the porosity and the adhesion strength.

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

입자 크기, 성능 및 압력 간의 관계 이해 (Understanding the Relationship between Particle Size, Performance and Pressure)

  • Matt James
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.7.1-7.4
    • /
    • 2024
  • The document "Understanding the Relationship Between Particle Size, Performance, and Pressure" explores the impact of particle size on chromatographic performance and system pressure. The study highlights how smaller particles can improve separation efficiency by providing higher resolution and faster analysis times. However, this comes at the cost of increased backpressure, which can challenge the system's hardware and require higher operating pressures. The document discusses the balance needed between particle size, column dimensions, and system pressure to optimize performance without exceeding the pressure limits of chromatographic systems. It outlines the advantages of using superficially porous particles (SPPs) over fully porous particles (FPPs) in achieving high efficiency with lower backpressure. The study also emphasizes the importance of selecting appropriate column dimensions and flow rates to manage system pressure while maintaining optimal performance. In conclusion, understanding the interplay between particle size, performance, and pressure is crucial for optimizing chromatographic separations, ensuring system longevity, and achieving high-quality analytical results.

  • PDF

수직형(垂直形) 로터리 살포기(撒布機)에 의한 비료입자(肥料粒子)의 운동(運動) (Particle Motion of a Vertical Rotary Distributor for Granular Material)

  • 성민기;박준걸;최창현
    • Journal of Biosystems Engineering
    • /
    • 제14권4호
    • /
    • pp.242-250
    • /
    • 1989
  • The performance of a vertical type centrifugal distributor of granular materials was studied by means of mathematical models and experimental investigations. To develop the mathematical description of particle motion, some assumptions were made. The distribution process consisted of three stages: the entrance of a particle to the blade, the motion of the particle on the blade, and the motion of the particle in the air. The physical properties of fertilizer, which affected the particle motion, were investigated: bluk density, coefficient of friction, coefficient of restitution, and particle size distribution. The particle motion were simulated by using a computer. A prototype distributor was designed and constructed for experimental tests. The following conclusions were drawn from the computer simulation and experiment results. 1. The fertilizer may slide or roll at the point of contact when they impact on the blade and move along the blade. 2. The interaction among fertilizers may prevent them from bouncing. 3. When fertilizers roll on the blade, rolling resistance is one of the factors affecting the particle's motion. 4. The trajectory angle and position of fertilizers from a disc depend on the blade position and particle shape, but the rotating speed of the disc affected them only slightly.

  • PDF

다양한 형상의 우주 물체와 충돌 각도를 고려한 우주 구조물의 초고속 충돌 시뮬레이션 연구 (Hypervelocity Impact Simulations Considering Space Objects With Various Shapes and Impact Angles)

  • 신현철;박재상
    • 한국항공우주학회지
    • /
    • 제50권12호
    • /
    • pp.829-838
    • /
    • 2022
  • 본 연구에서는 다양한 형상의 우주 물체와 우주 구조물 사이의 충돌 각도를 고려한 초고속 충돌(Hypervelocity impact) 시뮬레이션 연구를 수행하였다. 비선형 구조 동역학 전산 해석 프로그램인 LS-DYNA의 완화 입자 유동법(Smoothed Particle Hydrodynamics, SPH)을 사용하여 초고속 충돌 현상을 묘사하였으며, 금속 재료의 비선형 거동을 구현하기 위하여 Mie-Grüneisen의 상태 방정식과 Johnson-Cook의 재료 모델을 사용하였다. 구, 정육면체, 원기둥 및 원뿔 형상의 다양한 형상의 우주 물체를 이용하였으며, 우주 구조물은 알루미늄 평판(200 mm×200 mm×2 mm)으로 모델링되었다. 우주 물체가 우주 구조물 대비 4.119 km/s의 상대 속도로 충돌하는 시뮬레이션을 수행하여 동일 질량을 갖는 다양한 형상의 우주 물체와 우주 구조물 사이의 0°, 30° 및 45°의 충돌 각도를 고려하였을 시 초고속 충돌에 의하여 발생되는 파편운(debris cloud) 형상을 분석하였다. 동일한 운동 에너지를 갖는 우주 물체는 형상의 차이로 인해 모두 다른 파편운이 형성되었다. 더불어 충돌 각도의 증가에 따라 파편운의 크기가 줄어드는 경향을 확인하였다.