• 제목/요약/키워드: particle generator

검색결과 104건 처리시간 0.028초

Wake Characteristics of Vane-Type Vortex Generators in a Flat Plate Laminar Boundary Layer

  • Shim, HoJoon;Jo, Young-Hee;Chang, Kyoungsik;Kwon, Ki-Jung;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.325-338
    • /
    • 2015
  • Experimental and numerical investigations were conducted to identify the wake characteristics downstream of two vane-type vortex generators over laminar flat plate boundary layer. Experimental study was carried out by using the stereoscopic particle image velocimetry. To describe the flow field around the vortex generator in detail, numerical study was performed. We considered two different planform shapes of vortex generator: triangular and rectangular shape. The height of the generator was chosen to be about the boundary layer thickness at the position of its installation. Two different lengths of the generator were chosen: two and five times the height. Wake measurements were carried out at three angles of attack for each configuration. Wake characteristics for each case such as overall vortical structure, vorticity distribution, and location of vortex center with downstream distance were obtained from the PIV data. Wake characteristics, as expected, were found to vary strongly with the geometry and angle of attack so that no general tendency could be deduced. Causes of this irregular tendency were explained by using the results of the numerical simulation.

초음파를 이용한 18Mn-5Cr강 발전기 리테이닝 링의 신호분석에 관한 연구 (Research for Signal Analysis of 18Mn-5Cr Steel Generator Retaining Ring using Ultrasonic Wave)

  • 길두송;안연식;박상기
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.65-70
    • /
    • 2010
  • Retaining rings are used to support the field winding end turns from the centrifugal force by the high speed of the field and these are the overstressed parts among the generator parts. There have been several retaining failures in Europe and America, all attributable to stress corrosion cracking in 18Mn-5Cr steel. Since then, each manufacture companies have developed a good 18Mn-5Cr steel in temperature, strength characteristic and it is used in many field now. From many findings and test results, we could conformed that the failure might be grown in the overstressed condition unrelated to the moisture particle.

SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구 (A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.

Implementation and benchmarking of the local weight window generation function for OpenMC

  • Hu, Yuan;Yan, Sha;Qiu, Yuefeng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3803-3810
    • /
    • 2022
  • OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.

다단 임팩터(MOUDI)의 조대 입자 채취 특성 (Collection Characteristics of a MOUDI Cascade Impactor for Coarse Particles)

  • 배귀남;지준호;문길주
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.799-804
    • /
    • 1999
  • Particle collection characteristics of the MOUDI cascade impactor has been studied for coarse particles in the range of 2 to 20$mu extrm{m}$ in aerodynamic diameter. A vibrating orifice aerosol generator was empolyed to generate monodisperse test aerosols. The oleic acid and sodium chloride(NaCl) particles were used as test aerosols. Aluminum foil and Teflon filter were selected as impaction media. The sampling flow rate was changed from 25 to 35L/min. Particle collection efficiency for single stage was examined for liquid particles. The stage response was obtained experimentally for the cascade impactor composed of three stages and a backup filter. The results showed that most of particle collection efficiencies measured in this work are similar to the efficiency curves obtained by Marple et al.(1991). For particles less than cut-off size of the stage, the collection efficiencies of solid particles are similar to those of loquid particles. However, the collection efficiency of solid particles decreases with mereasing particle diameter for the particles greater than the actual cut-off size of the impactor. The particle collection efficiency increases with increasing sampling flow rate at the same particel size. However, the collection efficiency curves seem not to be greatly shifted with the flow rate. The stage responses obtained by direct measurements in this work are in good agreement with those derived from the collection efficiency curves for single stage.

  • PDF

Generation of Model Diesel Particles by Spark Discharge and Hydrocarbon Condensation

  • Kim, Hak-Joon;Kim, Jin-Ho;Choi, Young-Joo;Oh, Hyen-Chul;Chu, Jung-Bum;Kim, Sang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1972-1979
    • /
    • 2006
  • This study was conducted in order to generate model particles which were similar to particles in diesel emission. Spark discharge was used for carbon agglomerates and hydrocarbon condensation for particles that consist of carbon agglomerates and hydrocarbon. The size of the carbon agglomerates, whose mean size were 30 and 70 nm, ranged between 15 and 200 nm, and the total number concentration of the particles ranged from 3 to $5{\times}10^7#/cm^3$ as the controllable variables in spark discharge generator changed. The result of the hydrocarbon condensation experiment showed that the final sizes of the particles enlarged by condensation did not depend on the initial sizes, but the maximum condensational growth of carbon agglomerates by dodecane ($C_{12}H_{26}$) condensation was 112 times the initial size of 40 nm, while the size of the agglomerates by benzene ($C_6H_6$) was 3.25 times its initial size.

수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션 (A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator)

  • 박용군;임채경
    • 한국산학기술학회논문지
    • /
    • 제18권9호
    • /
    • pp.68-75
    • /
    • 2017
  • 본 논문에서는 해안가의 수평 파력발전 장치에 도입되는 상단 힌지 진자 형태의 파랑에너지 1차 추출 시스템에 대한 동적 운동 특성을 수조에서 모형실험과 연동 시뮬레이션을 통해 고찰 하였다. 조파기의 일정한 파고와 주기의 정현파형태 파도가 수조 프레임에 고정된 상단 힌지 진자 체의 플랩 부이에 부딪쳤을 때 부이 전체의 토크와 운동 궤적을 측정하였다. 또한 파도가 플랩부이에 부딪치는 현상을 강체 동력학과 입자유체 거동에 대한 연동 시뮬레이션을 통해 유체입자가 플랩부이에 부딪칠 때의 압력을 구하여 전체 부이에서의 토크와 힌지에서의 반력을 도출하여 비교 고찰 하였다. 그리고 일 방향수평 파도에 따른 진자 체의 규칙적이고 효과적인 좌우 주기운동을 발생시키기 위한 인장력 조정 값을 도출하였다. 향후 상단 힌지 진자 형태의 에너지 추출장치를 특징으로 하는 해안가 수평파력 발전 장치의 개발 및 제작 시 본 연구에서 도출된 결과 값을 주요 설계 데이터로 적용하고자 한다.

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발 (A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model)

  • 김장경;권현한;김동균
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • 추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

흡입 독성 평가를 위한 다중벽 탄소나노튜브의 에어로졸 발생장치 개발 및 성능 평가 (Development and Performance Evaluation of Aerosol Generator of MWCNTs for Inhalation Toxicology)

  • 이건호;전기수;유일재;안강호
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.231-238
    • /
    • 2013
  • Carbon nanotubes (CNTs) are one of the nanomaterials that were discovered by Iijima in 1991 for the first time. CNTs have long cylindrical and axi-symmetric structures. CNTs are made by rolling graphene sheets. Because of their large length-to-diameter ratio, they are called nanotubes. CNTs are categorized as single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) based on the shell structures. CNTs are broadly used in various fields, such as scanning probe microscopy, ultra fine nano balance and medicine, due to their extraordinary thermal conductivity, electrical and mechanical properties. Because long, straight CNTs have the same shape as asbestos, which cause cancer in cells lining the lung, there have been many studies on the effects of MWCNTs on human health that have been conducted. Stable atomization of CNTs is very important for the estimation of inhalation toxicity. In the present study, electro-static assisted axial atomizer (EAAA), which is the instrument that uses MWCNTs and aerosolizes them by transforming the single fiber shape using ultrasonic dispersion and electric field, was invented. EAAA consists of a ultrasonic bath for dispersion of MWCNTs and a particle generator for atomizing single fibers. The performance evaluation was conducted in order to assess the possibilities of 6-hour straight atomization with stability, which is the suggested exposure time in a day for the estimation of inhalation toxicity.

Preliminary Study on the Cloud Condensation Nuclei (CCN) Activation of Soot Particles by a Laboratory-scale Model Experiments

  • Ma, Chang-Jin;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권4호
    • /
    • pp.175-183
    • /
    • 2014
  • To visually and chemically verify the rainout of soot particles, a model experiment was carried out with the cylindrical chamber (0.2 m (D) and 4 m (H)) installing a cloud drop generator, a hydrotherometer, a particle counter, a drop collector, a diffusing drier, and an artificial soot particle distributer. The processes of the model experiment were as follows; generating artificial cloud droplets (major drop size : $12-14{\mu}m$) until supersaturation reach at 0.52%-nebulizing of soot particles (JIS Z 8901) with an average size of $0.5{\mu}m$-counting cloud condensation nuclei (CCN) particles and droplets by OPC and the fixation method (Ma et al., 2011; Carter and Hasegawa, 1975), respectively - collecting of individual cloud drops - observation of individual cloud drops by SEM - chemical identifying of residual particle in each individual droplet by SEM-EDX. After 10 minutes of the completion of soot particle inject, the number concentrations of PM of all sizes (> $0.3{\mu}m$) dramatically decreased. The time required to return to the initial conditions, i.e., the time needed to CCN activation for the fed soot particles was about 40 minutes for the PM sized from $0.3-2.0{\mu}m$. The EDX spectra of residual particles left at the center of individual droplet after evaporation suggest that the soot particles seeded into our experimental chamber obviously acted as CCN. The coexistence of soot and mineral particle in single droplet was probably due to the coalescence of droplets (i.e., two droplets embodying different particles (in here, soot and background mineral particles) were coalesced) or the particle capture by a droplet in our CCN chamber.