• Title/Summary/Keyword: particle explosion

Search Result 101, Processing Time 0.025 seconds

Comparison of Partial Least Squares and Support Vector Machine for the Flash Point Prediction of Organic Compounds (유기물의 인화점 예측을 위한 부분최소자승법과 SVM의 비교)

  • Lee, Chang Jun;Ko, Jae Wook;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.717-724
    • /
    • 2010
  • The flash point is one of the most important physical properties used to determine the potential for fire and explosion hazards of flammable liquids. Despite the needs of the experimental flash point data for the design and construction of chemical plants, there is often a significant gap between the demands for the data and their availability. This study have built and compared two models of partial least squares(PLS) and support vector machine(SVM) to predict the experimental flash points of 893 organic compounds out of DIPPR 801. As the independent variables of the models, 65 functional groups were chosen based on the group contribution method that was oriented from the assumption that each fragment of a molecule contributes a certain amount to the value of its physical property, and the logarithm of molecular weight was added. The prediction errors calculated from cross-validation were employed to determine the optimal parameters of two models. And, an optimization technique should be used to get three parameters of SVM model. This work adopted particle swarm optimization that is one of heuristic optimization methods. As the selection of training data can affect the prediction performance, 100 data sets of randomly selected data were generated and tested. The PLS and SVM results of the average absolute errors for the whole data range from 13.86 K to 14.55 K and 7.44 K to 10.26 K, respectively, indicating that the predictive ability of the SVM is much superior than PLS.

Fluid Simulations in Academy Awarded Movies (아카데미상 영화에서 유체 시뮬레이션 기술)

  • Kim, Myung-Gyu;Oh, Seung-Taik;Choi, Byoung-Tae
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.3
    • /
    • pp.19-30
    • /
    • 2008
  • Fluid simulation for computer graphics is a field of generating the realistic movements of water, smoke, fire, explosion, sand and related phenomena to be used in motion pictures and video games. In this paper we review the fluid simulation technologies and present a trend analysis for the simulation methods used in the recent movies. First of all, for this purpose, the two methods that are most widely used for fluid simulation are explained as well as their technical issues. These two methods are classified into Eulerian grid-based and Lagrangian particle-based approaches. Next, focusing on the achievements of the scientists and engineers that the 2008 Sci-Tech Oscar Awards are given to, the features of their fluid simulation technologies are analyzed. Finally, we anticipate that there are and will be the needs for visualizing fluid interaction with rigid and soft bodies and topological change among solid, fluid and gas, creating digital creatures based on fluid simulation and presenting interaction between creature and fluid.

  • PDF

An Experimental Study on the Combustion Characteristics of CWM Single Droplet (CWM 단일액적의 연소특성에 관한 연구)

  • Park, Chong-Sang;Lee, Tae-Won;HA, Jong-Yul;Chung, Sung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

Pyrolysis Hazard for Nano and Micro-sized Aluminium Dusts (알루미늄 나노 및 마이크로 입자의 열분해 위험성)

  • Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Aluminum dusts, from micro to nano-scale, are widely used in various applications such as propulsion and pyrotechnic compounds because of high burning rate. In this study, the pyrolysis hazard of aluminum dusts with different median size (sized by 70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) were investigated experimentally. The thermal decomposition characteristics of aluminum dusts with the variation of heating rate were investigated using TGA (Thermo gravimetric analysis) and was estimated the minimum ignition temperature from temperature of weight gain in nano and micro-sized aluminum dusts with different diameter. In the same condition of heating rate, the temperature of weight gain in aluminum dust layers increased with increasing of particle size and increased with increasing of heating rates in air. From the results, it was estimated that the pyrolysis hazard of aluminum dusts decrease with increasing of mean diameter.

A Study on The Spontaneous Ignition of a Hydroxy Propyl Methyl Cellulose Dust Cloud (Hydroxy Propyl Methyl Cellulose 분진의 운상자연발화에 관한 연구)

  • Lim, Woo-Sub;Mok, Yun-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.137-140
    • /
    • 2004
  • The minimum ignition temperature at which the dust cloud can spontaneously ignite is considered to be very important in industries to prevent explosion occurring in hot surfaces. This paper has dealt with the experimental study of the determination of minimum ignition temperature of Hydroxy Propyl Methyl Cellulose (HPMC) dust cloud. We have used the Godbert-Greenwald Furnace Apparatus to determine the ignition temperature and limiting oxyten concentration for dust could. The experimental determinations on the minimum ignition temperature were carried out with various particle size with nominal diameters 45, 75 and 106${\mu}m$. The limiting oxygen concentration of dust cloud was determinated for the smaller size(45${\mu}m$) HPMC. Minimum ignition temperature of dust cloud was at 364$^{\circ}C$ for the concentration of 2.5g/L in the air and became higher with the increasing of nitrogen concentration. It was also found that the ignition didn't occur when the oxygen concentration was below 10%, and limiting oxygen concentration is at 11%.

Numerical Simulation based on SPH of Bullet Impact for Fuel Cell Group of Rotorcraft (입자법 기반 항공기용 연료셀 그룹 피탄 수치모사)

  • Kim, Hyun Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • There is a big risk of bullet impact because military rotorcraft is run in the battle environment. Due to the bullet impact, the rapid increase of the internal pressure can cause the internal explosion or fire of fuel cell. It can be a deadly damage on the survivability of crews. Then, fuel cell of military rotorcraft should be designed taking into account the extreme situation. As the design factor of fuel cell, the internal fluid pressure, structural stress and bullet kinetic energy can be considered. The verification test by real object is the best way to obtain these design data. But, it is a big burden due to huge cost and long-term preparation efforts and the failure of verification test can result in serious delay of a entire development plan. Thus, at the early design stage, the various numerical simulations test is needed to reduce the risk of trial-and-error together with prediction of the design data. In the present study, the bullet impact numerical simulation based on SPH(smoothed particle hydrodynamic) is conducted with the commercial package, LS-DYNA. Then, the resulting equivalent stress, internal pressure and bullet's kinetic energy are evaluated in detail to examine the possibility to obtain the configuration design data of the fuel cell.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.1
    • /
    • pp.3-13
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ${\phi}70mm$ on the calcalious sand stone (soft -modelate -semi hard Rock). The total numbers of test blast were 88. Scale distance were induced 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ were V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum charge per delay-period of eight milliseconds or more (kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents where the quantity $\frac{D}{W^b}$ is known as the scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagorized in three groups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge Per delay Plots of peak particle velocity versus distoance were made on log-log coordinates. The data are grouped by test and P.P.V. The linear grouping of the data permits their representation by an equation of the form ; $V=K(\frac{D}{W^{\frac{1}{3}})^{-n}$ The value of K(41 or 124) and n(1.41 or 1.66) were determined for each set of data by the method of least squores. Statistical tests showed that a common slope, n, could be used for all data of a given components. Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m ------- under l00m ${\cdots\cdots\cdots}{\;}41(D/sqrt[2]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}A$ Over 100m ${\cdots\cdots\cdots\cdots\cdots}{\;}121(D/sqrt[3]{W})^{-1.66}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}B$ where ; V is peak particle velocity In cm / sec D is distance in m and W, maximLlm charge weight per day in kg K value on the above equation has to be more specified for further understaring about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

A Study on the Hazardousness and the TLV in Working Environments of Benzine (벤진의 유해 위험성과 작업환경 노출기준 연구)

  • Kim, Hyeon-Yeong;Lee, Sung-Bae;Han, Jung-Hee;Shin, Jea-Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.233-244
    • /
    • 2006
  • Of many volatile organic detergents for metals, benzine(CAS No. 8030-30-6), of which the toxicity has not yet been proven, has been used as an alternative of the halide compounds in the consideration of toxic effects, global warming and the destruction of ozone layer. In order to evaluate the effects of the benzine on human body by investigating the subchronic inhalation toxicity, to obtain the basic data for establishing the criteria of exposure in working environments and to classify the hazardousness in compliance with the Industrial Safety and Health Act by evaluating the hazardousness, repeated inhalation exposure test was carried with SD rats. The rats were grouped by 10 females and males each. The repetitive inhalation exposures were carried out at 4 levels of concentration of 0 ppm, 60 ppm, 300 ppm, and 1,500 ppm, for 6 hours a day, 5 days a week, for 13 weeks. The results are described hereunder. 1. No death of the animals of the exposed and controlled groups in the test period. Not any specific clinical symptoms, change in feed intake quantity, abnormality in eye test, or change in activity were observed. 2. In the 300 ppm and 1,500 ppm groups, weight reduction in the female groups and weight increase of liver and kidney in the male groups compared with control group were observed with statistical significance(p<0.05). 3. In the blood test, the HCT increased in the male 300 ppm group and the number of hematocyte increased, MCV and MCH decreased in the male 1,500 ppm group. In the female 1,500 ppm group, the HB decreased and the distribution width of the hematocyte particle size increased. In the blood biochemistry test, the TP in the male 1,500 ppm group and the LDH in the female 1,500 ppm group were increased with statistical significance(p<0.05). 4. Under the test conditions of the present study with SD rats, the NOEL was evaluated to be from 60 ppm to 300 ppm for both male and female groups. By extrapolation, the NOEL for human who work 8 hours a day was evaluated to be from 128 ppm to 640 ppm 5. Since the NOEL evaluated in this study do not exceed 60ppm(0.184 mg/L) the test material does not belong to the classification of the hazardous substance "NOEL${\leq}$0.5mg/L/6hr/90day(rat), for continuous inhalation of 6hours a day for 90 days" nor to the basic hazardous chemical substance class 1(0.2 mg/L/6hr/90day(rat) defined by the GHS which is a criteria of classification and identification of chemical compounds. However, considering the boiling point($30-204^{\circ}C$), flashing point($-40^{\circ}C$), vapor pressure(40 mmHg), and the inflammable range(1.0 - 6.0 %), sufficient care should be taken for handling in the safety aspects including fire or explosion.

Numerical Analysis of Steel-strengthened Concrete Panels Exposed to Effects of Blast Wave and Fragment Impact Load Using Multi-solver Coupling (폭풍파 및 파편 충돌에 대한 강판보강 콘크리트 패널의 복합적 수치해석)

  • Yun, Sung-Hwan;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.25-33
    • /
    • 2011
  • The impact damage behavior of steel-strengthened concrete panels exposed to explosive loading is investigated. Since real explosion experiments require the vast costs to facilities as well as the blast and impact damage mechanisms are too complicated, numerical analysis has lately become a subject of special attention. However, for engineering problems involving blast wave and fragment impact, there is no single numerical method that is appropriate to the various problems. In order to evaluate the retrofit performance of a steel-strengthened concrete panel subject to blast wave and fragment impact loading, an explicit analysis program, AUTODYN is used in this work. The multi-solver coupling methods such as Euler-Lagrange and SPH-Lagrange coupling method in order to improve efficiency and accuracy of numerical analysis is implemented. The simplified and idealized two dimensional and axisymmetric models are used in order to obtain a reasonable computation running time. As a result of the analysis, concrete panels subject to either blast wave or fragment impact loading without the steel plate are shown the scabbing and perforation. The perforation can be prevented by concrete panels reinforced with steel plate. The numerical results show good agreement with the results of the experiments.

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.