• Title/Summary/Keyword: particle erosion

Search Result 145, Processing Time 0.028 seconds

A Measurement of Splash Erosion Under Natural Rainfall (야외(野外)에서 Splash Erosion 측정(測定)에 관한 연구(硏究))

  • Shin, Jae-Sung;Ko, Mun-Hwan;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.104-109
    • /
    • 1981
  • The experiment was designed to measure splash erosion and to investigate the relationships between soil detachment, kinetic energy and C factor at various soils and crops under the natural rainfall, using the modified Ellison cup. The results obtained were as follows: 1. Splash erosion increased as the texture was coarser, reaching a maximum amount in loamy sand of 12.6ton/10a/year, 9.7ton for loam, 9.0ton for sandy loam, and 7.0ton for clay loam. 2. Splash erosion positively related to kinetic energy ($EI_{30}$) but negatively to K value. 3. A considerable relationship between splash erosion and kinetic energy was observed under coverage less than 50%; however, it decreased with increasing canopy resulting in no relation over 90% coverage. The amount of soil detachment by natural rainfall ranged from 10 to 15ton/10a at various cropping systems. 4. The particle size distribution of splashed soil was similar to that of original one and fine sand($250-100{\mu}$) marked the highest detachment and splash.

  • PDF

Particle Laden Flows Around Orifice Plates for Pressure Control in Pulverized Coal Pipe Lines (분체 이송관내 압력 조절을 위한 오리피스 주위에서의 입자 유동 및 마모 해석)

  • Cho, Hyung-Hee;Lee, Jae-Keun;Park, Ho-Dong;Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1499-1508
    • /
    • 1998
  • A numerical study is performed to investigate pressure drops, particle trajectories and erosion around orifice plates in pulverized coal pipe lines. Particle impaction rates change significantly with orifice shapes and Stokes numbers. At Reynolds number of $5{\times}10^5$, the pulverized coal flows well with streamlines and do not collide at the orifice plates at small sizes (${\sim}20{\mu}m$). However, the large particles (over $70{\mu}m$) impact on the front face of the orifice and erode the orifice surface. The pressure loss coefficients around the erode orifice are largely different from the designed original orifice.

Effects of particle size of Alumina Trihydrate on Dielectric Properties of EPDM (EPDM rubber의 절연특성에 대한 수산화알미늄 입자크기의 영향)

  • Lee, Chul-Ho;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1210-1212
    • /
    • 1997
  • This study describes the influence of the size of the median particles of alumina trihydrated(ATH) filler on the tracking resistance, tensile properties, dielectric properties and water immersion properties of EPDM rubber. A fixed 100pph concentration of the filler of A TH was used for all particle sizes from 0.7 to $20{\mu}m$. It is shown that tracking and erosion resistance decrease with increasing particle size, whereas tensile properties and dielectric properties are improved with increasing particle size of ATH.

  • PDF

Evaluation of Liquid Droplet Impingement Erosion through Prediction Model and Experiment (예측모델 및 실험을 통한 액적충돌침식 손상 평가)

  • Yun, Hun;Hwang, Kyeong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1105-1110
    • /
    • 2011
  • Flow-accelerated corrosion (FAC) is a well-known phenomenon that may occur in piping and components. Most nuclear power plants have carbon-steel-pipe wall-thinning management programs in place to control FAC. However, various other erosion mechanisms may also occur in carbon-steel piping. The most common forms of erosion encountered (cavitation, flashing, Liquid Droplet Impingement Erosion (LDIE), and Solid Particle Erosion (SPE)), have caused wall thinning, leaks, and ruptures, and have resulted in unplanned shutdowns in utilities. In particular, the damage caused by LDIE is difficult to predict, and there has been no effort to protect piping from erosive damage. This paper presents an evaluation method for LDIE. It also includes the calculation results from prediction models, a review of the experimental results, and a comparison between the UT data in the damaged components and the results of the calculations and experiments.

Analysis of Liquefied Layer Activities Considering Erosion and Sedimentation of Debris Flow (토석류의 침식 및 퇴적을 고려한 유동층의 거동 분석)

  • Kim, Sungduk;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.23-29
    • /
    • 2019
  • Heavy rainfall is in causing debris flow by recent climate change and causes much damage in the downstream. The debris flow from the mountainous area runs to the downstream, repeating sedimentation and erosion, and appears as a fluidized soil-water mixture. Continuity equation and momentum equation were applied to analyze the debris flow with strong mobility, and the sedimentation and erosion velocity with fine particle fractions were also applied. This study is to analyze the behavior of debris flow at the downstream end for the variation of the amount of sediments can occur in the upstream of the mountain. Analysis of sediment volume concentration at the downstream end of the channel due to the variance of the length of pavement of the granulated soils resulted in the higher the supply flow discharge and the longer the length of pavement, the greater the difference in the level of sediment concentration and the earlier the point of occurrence of the inflection point. The results of this study will provide good information for determining the erosion-sedimentation velocity rate which can detect erosion and sedimentation on steep slopes.

Assessment of Soil Erosion and Sedimentation in Cheoncheon Basin Considering Hourly Rainfall (시강우를 고려한 천천유역의 토양침식 및 퇴적 평가)

  • Kim, Seongwon;Lee, Daeeop;Jung, Sungho;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.4
    • /
    • pp.5-17
    • /
    • 2020
  • In recent years, the frequency of heavy rainfall associated with high rainfall intensity has been continuously increasing due to the effects of climate change; and thus also causes an increase in watershed soil erosion. The existing estimation techniques, used for the prediction of soil erosion in Korea have limitations in predicting the: average soil erosion in watersheds, and the soil erosion associated with abnormal short-term rainfall events. Therefore, it is necessary to consider the characteristics of torrential rainfall, and utilize physics-based model to accurately determine the soil erosion characteristics of a watershed. In this study, the rainfall kinetic energy equation, in the form of power function, is proposed by applying the probability density function, to analyze the rainfall particle distribution. The distributed rainfall-erosion model, which utilizes the proposed rainfall kinetic energy equation, was utilized in this study to determine the soil erosion associated with various typhoon events that occurred at Cheoncheon watershed. As a result, the model efficiency parameters of the model for NSE and RMSE are 0.036 and 4.995 ppm, respectively. Therefore, the suggested soil erosion model, coupled with the proposed rainfall-energy estimation, shows accurate results in predicting soil erosion in a watershed due to short-term rainfall events.

Characterization of a Magnetron Sputtering Cathode by a 3D Particle Model (3차원 입자 모델을 이용한 마그네트론 스퍼터링 음극의 특성 분석)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.205-213
    • /
    • 2008
  • A 3D particle code is developed to analyze electron behavior in a planar magnetron sputtering cathode either in balanced or unbalanced configuration. Three types of collisions are included; electron - neutral elastic, excitation to a metastable state and ionization. Flight path is calculated by a 4-th order Runge-Kutta method with a time step of 10 ps. Effects of electron starting position, magnetic field intensity and configuration were analyzed. For a more efficient and accurate modeling, multithreading technique is considered for multicore CPU computers. Under an assumption of cold ion approach, target erosion profiles are predicted for a flat target surface.

Experimental Investigation on In-Situ Capping Erosion by Waves (피복공법 적용 시 파랑에 의한 피복재 침식 실험 연구)

  • Kong, Jin-Young;Kim, Young-Taek;Ryu, Byung-Hyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.33-43
    • /
    • 2016
  • The determination of in-situ capping materials is one of the most important factors to design in-situ capping in order to protect capping materials from erosion. Previous studies have established relationship between the velocity induced by wave energy and effective diameter of sediments, but they are mostly empirical and numerical researches which is too complicated for field engineers to analyze the erosion of in-situ capping materials. This study provides simple analytical solutions and reliability based on hydraulic model test results. Experimental results show that measured flow velocities with respect to depth induced by wave energy are almost the same as estimated velocities and the erosion resistances of the different effective particle diameters can be estimated.

Sediment monitoring for hydro-abrasive erosion: A field study from Himalayas, India

  • Rai, Anant Kr.;Kumar, Arun
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2017
  • Sediment flow through hydropower components causes hydro-abrasive erosion resulting in loss of efficiency, interruptions in power production and downtime for repair/maintenance. Online instruments are required to measure/capture the variations in sediment parameters along with collecting samples manually to analyse in laboratory for verification. In this paper, various sediment parameters viz. size, concentration (TSS), shape and mineral composition relevant to hydro-abrasive erosion were measured and discussed with respect to a hydropower plant in Himalayan region, India. A multi-frequency acoustic instrument was installed at a desilting chamber to continuously monitor particle size distribution (PSD) and TSS entering the turbine during 27 May to 6 August 2015. The sediment parameters viz. TSS, size distribution, mineral composition and shape entering the turbine were also measured and analysed, using manual samples collected twice daily from hydropower plant, in laboratory with instruments based on laser diffraction, dynamic digital image processing, gravimetric method, conductivity, scanning electron microscope, X-ray diffraction and turbidity. The acoustic instrument was able to capture the variation in TSS; however, significant deviations were found between measured mean sediment sizes compared to values found in the laboratory. A good relation was found for turbidity ($R^2=0.86$) and laser diffraction ($R^2=0.93$) with TSS, which indicated that turbidimeter and laser diffraction instrument can be used for continuous monitoring of TSS at the plant. Total sediment load passed through penstock during study period was estimated to be 15,500 ton. This study shall be useful for researchers and hydropower managers in measuring/monitoring sediment for hydro-abrasive erosion study in hydropower plants.

Effect of Operating Pressure on the Heat Transfer and Particle Flow Characteristics in the Syngas Quench System of an IGCC Process (IGCC 합성가스 급속 냉각시스템의 운전 압력에 따른 열유동 및 입자 거동 특성 연구)

  • Park, Sangbin;Yang, Joohyang;Oh, Junho;Ye, In-Soo;Ryu, Changkook;Park, Sung Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • In a coal gasifier for IGCC, hot syngas leaving the gasifier at about 1550oC is rapidly quenched by cold syngas recycled from the gas cleaning process. This study investigated the flow and heat transfer characteristics in the gas quench system of a commercial IGCC process plant under different operating pressures. As the operating pressure increased from 30 bar to 50 bar, the reduced gas velocity shortened the hot syngas core. The hot fly slag particles were retained within the core more effectively, and the heat transfer became more intensive around the hot gas core under higher pressures. Despite the high particle concentrations, the wall erosion by particle impaction was estimated not significant. However, large particles became more stagnant in the transfer duct due to the reduced gas velocity and drag force under higher pressures.