• Title/Summary/Keyword: particle entrainment

Search Result 38, Processing Time 0.021 seconds

Comparison of particle collection characteristics in a wire-cylindrical wet electrostatic precipitator with and without a water film (와이어-실린더형 습식 전기집진기의 수막 유무에 따른 집진 특성 비교)

  • Woo, Chang Gyu;Cho, Won Ki;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.89-95
    • /
    • 2018
  • People's environmental concerns for fine particles in Korea lead to the strong necessity of improving the performance of environmental control systems. Wet electrostatic precipitators (ESPs) are considered as one of the alternatives to overcome the limit of previous dry ESPs, the re-entrainment of collected particles during rapping and back corona problem for high electrical resistivity dusts etc. In this study, a wire-cylindrical ESP with a thin water film has been developed. Particle collection characteristics were compared in the ESP with operations of water film on and off. Particle collection efficiencies at various applied voltages as well as voltage-current curves were almost the same in the ESP with and without a water film. Particle collection performance for PM1.0, PM2.5 and PM10 in the wet ESP with a water film was constantly maintained with operation time even in the high dust loading environment. This results indicate that a uniform water film in our wet ESP was successfully formed with a very thin layer without any dry spot and therefore could continuously clean the collected particles on the inner wall of the ESP without any performance degradation.

Experimental Investigation on the Vortical Flows in a Single-Entry Swirl Mixing Chamber (단일공급 스월 혼합챔버 내의 와류유동에 대한 실험적 연구)

  • Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.445-450
    • /
    • 2011
  • Swirling flows inside a swirl mixing chamber are investigated for simple configuration where swirl is produced by a tangential entry type swirl generator. The flow downstream of the swirl generator has been quantified by measurements two velocity components and their corresponding mean values along axial and radial direction using Particle Image Velocimetry(PIV). The mass flow rate of the tangential entry is increased in order to study their effect on the flow field. From the measurement profile of velocity and vorticity, flow mixing characteristics in a swirl mixing chamber are evaluated.

  • PDF

Experimental Investigation of Two Parallel Plane Jets (두 개의 평행한 평면 제트의 실험적 연구)

  • Kim Dong-Keon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.214-223
    • /
    • 2005
  • The characteristics of flow on two parallel plane jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. In case of unventilated parallel plane jets, it was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. There was no recirculation zone in the ventilated parallel plane jets. It was found that the spanwise turbulent intensities of unventilated jets were higher than those of ventilated jets because of the interaction of jets, and the streamwise turbulent intensities of ventilated jets were higher than those of unventilated jets because of the effect of entrainment.

PIV Measurements of Flow and Turbulence Characteristics of Round Jet in Crossflow (횡단류 제트의 유동 및 난류특성치에 대한 PIV 측정)

  • Kim, Kyung-Chun;Kim, Sang-Ki;Yoon, Sang-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.382-389
    • /
    • 2000
  • The instantaneous and ensemble averaged flow characteristics of a round jet issuing normally into a crossflow was studied using a flow visualization technique and Particle Image Velocimetry measurements. Experiments were performed at a jet-to-crossflow velocity ratio, 3.3, and two Reynolds numbers, 1050 and 2100, based on crossflow velocity and jet diameter. Instantaneous laser tomographic images of the vertical center plane of the crossflow jet showed that there exist very different natures in the flow structures of the near field jet even though the velocity ratio is the same. It was found that the shear layer becomes much thicker when the Reynolds number is 2100 due to the strong entrainment of the inviscid fluid by turbulent interaction between the jet and crossflow. The mean and second order statistics were calculated by ensemble averaging over 1000 realizations of instantaneous velocity fields. The detail characteristics of mean flow field, stream wise and vertical r.m.s. velocity fluctuations, and Reynolds shear stress distributions were presented. The new PlV results were compared with those from previous experimental and LES studies.

The effect of the nozzle exit geometry on the flow characteristics of the free condensing jet

  • Jaewon Myeong;Seungwan Kim;Dehee Kim;Jongtae Kim;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2545-2556
    • /
    • 2024
  • In the present study, we investigated the velocity distribution, temperature distribution and condensation characteristics of steam jet issuing from four different orifice nozzles with a Reynolds number of approximately 79,000 using the phase Doppler particle analyzer system and a K-type thermocouple. The steam jet discharged from the orifice nozzle has a wider jet width compared to pipe nozzle because of the vena-contracta which can enhance the mixing of steam jet with the ambient air. Therefore, the orifice jet showed less condensation due to its wideness, resulting in small velocity decay rate and large temperature decay rate due to momentum conservation and decreased latent heat release compared to pipe nozzle, respectively. Also, the wider jet width of the orifice jet resulted in larger velocity and temperature spread rate compared to the pipe jet. In addition, the increase in the aspect ratio of the orifice jet led to more condensation and larger velocity spread rate and temperature spread rate due to both the vena-contracta and axis-switching effect, resulting in the increase of jet entrainment.

퇴적물 구성입도가 부상과 퇴적에 미치는 영향

  • 강시환
    • Water for future
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 1984
  • To understand the effects of particle size on sedimentation processes, huydraulic laboratory experiments were conducted using four groups of ssediments: There well-defined sediments of uniform composition and narrow-size distribution, and a fourth group which was a mixture of these three sediments. Entrainment and deposition experiments were performed for each group and sediments with bottom shear stresses of 1~14 dynes/$\textrm{cm}^2$. Inter-comparisons of the experimental results were presented.

  • PDF

Experimental Study on the Spray Characteristics for Sludge Removal Nozzle with High Pressure (슬러지 제거용 고압분사 노즐특성에 관한 실험적 연구)

  • Lee, Sam-Goo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.155-160
    • /
    • 2004
  • Water jet trajectories and velocity deficits from a high pressurize nozzles were experimentally observed. In this article, several parameters affecting plugging and erosion onto the steam generator tube were quantitatively analyzed. Visualization, velocity distribution, and spray growth rate with different nozzle configurations have been mainly focused using a 2-D PDPA (Phase Doppler Particle Analyzer) system. The results indicated that trajectories along the centerline regardless of their momentum has its potential core region. However, the phenomena from the peripheral part need to be meticulosly considered. Accordingly, it is evident that quantitative velocity deficits at the outer region are outstanding due to the aerodynamical drag and entrainment.

A Study on Natural Convection in an Inclined Open Cavity using PIV Measurement (PIV계측에 의한 상부가 개방된 경사진 캐비티에서의 자연대류에 관한 연구)

  • Cho, W.H.;Bae, D.S.;Kwon, O.B.;Lee, D.H.;Kim, N.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 2002
  • Two-dimensional natural convection in an inclined open cavity with bottom heated, two side insulated and the top open was investigated using PIV(Particle-Image-Velocimetry) measurement. Experimental results are presented for Prandtl number, Pr=6.62, cavity aspect ratio, A=1.0, Rayleigh number from $1.294{\times}10^6\;to\;3.8841{\times}10 ^6$, and inclination angles, ${\alpha}=0$, 30 and 60 deg to the horizontal. It was found that the fluid rises along both side walls in the boundary layer region at ${\alpha}=0\;deg$, and the inclination of the cavity induced flow entrainment. The experimental results are in good agreement with the numerical results.

  • PDF

Effects of Media Breakage on Infiltration Characteristics in Stormwater Management System (강우유출수 처리시설 침투특성에 대한 필터여재 파쇄의 영향)

  • Segismundo, Ezequiel Q.;Koo, Bon-Hong;Kim, Lee-Hyung;Lee, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • For sand and zeolite filter media in stormwater BMPs, media breakage effects on infiltration were investigated. Compaction effort and infiltration force were mainly examined for breakage sources. The 1-D column infiltration tests for un-compacted and compacted media filters were conducted to investigate the breakage effect on infiltration. As a result, the following findings were deduced: 1) particle breakage due to filtration forces was found to be relatively minimal; 2) un-compacted media had lesser amount of crushed particles and permeability fluctuations compared to compacted media; 3) even without the presence of suspended solids in the influent, reduction in permeability was found, which resulted from rearrangement and re-entrainment of media particle itself; 4) only media particle breakage resistance is considered, sand was revealed to have better performance compared to zeolite media.

Applicability of hiding-exposure effect to suspension simulation of fine sand bed (가는 모래의 부유 모의시 차폐효과 고려의 영향)

  • Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.607-616
    • /
    • 2021
  • The purpose of this study is to simulate the transport of nonuniform sediment considering the hiding-exposure effect numerically. In order to calculate the transport of multi-disperse suspended sediment mixtures, the set of advection-diffusion equations for each particle class is solved. The applicability of the numerical model is examined by comparing the simulation results with experimental data. In this study, we calculate the vertical distribution of total concentration of sediment particles using two approaches: (1) by considering the mixture as represented by a single size; and (2) by combining the concentration of the sediment corresponding to several particle size classes; From the simulation results, it is shown that both approaches calculate reasonable results due to the narrow range of size distribution. Under the condition of nonuniform sediment, the critical shear stress of the sediment particle is influenced by the size-selective entrainment, i.e., hiding-exposure effect. It is shown in this study that the effect of hiding-exposure effect on the erosion rates of fine sand is negligibly small.