• 제목/요약/키워드: particle energy

검색결과 2,345건 처리시간 0.033초

Effects of particle size and lipid form of corn on energy and nutrient digestibility in diets for growing pigs

  • Lyu, Zhiqian;Wang, Lu;Wu, Yifan;Huang, Chengfei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권2호
    • /
    • pp.286-293
    • /
    • 2020
  • Objective: Two experiments were conducted to evaluate the effects of corn particle size and lipid form on the apparent total tract digestibility (ATTD) of energy and nutrients in diets for growing pigs. Methods: In Exp. 1, thirty barrows (initial body weight [BW], 53.1±3.9 kg) were allotted to 1 of 5 diets formulated with 96.9% corn ground to 441, 543, 618, 659, and 768 ㎛, respectively. In Exp. 2, thirty-six barrows (initial BW, 54.7±3.6 kg) were allotted to 1 of 6 diets formulated by including 2% or 15% corn germ (CG 2 or CG 15), 1% or 6% corn oil (CO 1 or CO 6), 1% CO+2% corn germ meal (CO 1+CGM 2), or 6% CO+15% corn germ meal (CO 6+CGM 15), respectively. Results: The ATTD of gross energy (GE) and the digestible energy (DE) in diet and corn grain linearly decreased as the corn particle size increased (p<0.05) from 441 to 768 ㎛. Particle size had a quadratic effect (p<0.05) on the ATTD of neutral detergent fiber and acid detergent fiber in diets, and which firstly increased and then decreased as the corn particle size increased from 441 to 618 ㎛ and 618 to 768 ㎛, respectively. The ATTD of GE, ether extract (EE), and the DE in CO 1 diet and CO 6 diet was greater (p<0.05) than that in CG 2 diet and CG 15 diet, respectively. The ATTD of EE in CO 6 diet and CO 6+CGM 15 diet was greater (p<0.05) than that in CO 1 diet and CO 1+CGM 2 diet. Conclusion: Less than 618 ㎛ was recommended for corn particle size in growing pig's diet and extracted lipid had greater digestibility than the intact lipid in corn. Higher concentration of extracted CO had greater digestibility of EE compared with lower concentrations of CO diet.

RHEOLOGICAL PROPERTIES OF MAGNETIC PARTICLE SUSPENSIONS

  • Kwon, T.M.;Choi, H.J.;Jhon, M.S.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.667-671
    • /
    • 1995
  • The viscometric technique is used to study the effects of microstructure on the viscosity (viscosity vs. concentration or shear rate) of magnetic particle suspensions. In this characterization, measurement of suspension viscosity is used to obtain the dependence of viscous energy dissipation on microstructural state of dispersions. Microstructural shape effects which are related to particle orientation are then indirectly obtained. Empirical formulas from mean field theory and the Mooney equation, which are applicable at high concentration of magnetic particles, are used to relate viscosity to particle concentration. The validity and physical meaning of these equations are discussed.

  • PDF

나노 기술의 중요성과 생체 활성 유기 나노 입자의 제조법 (Significance of Nanotechnology and Preparation Methods of Bioactive Organic Nanoparticle)

  • 유지연;최지연;김기현;이종찬;이종휘
    • Journal of Dairy Science and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.9-17
    • /
    • 2005
  • Nanotechnology has penetrated into the various branches of research and development and it is particularly of benefit to the particle size engineering. It has been widely known that the particle size of an active pharmaceutical ingredient (API) is critical in determining the bioavailability and processability of pharmaceutical formulation. However, the window of appropriate particle size has been limited mainly due to related processing difficulties. The windows have been widened by the recent development of nanotechnologies, resulting in diversified drug delivery systems. The impact of this development is far more fundamental than what can be expected from conventional particle size engineering. It is the case that the preparation and use of nanoparticles will soon be a common task in the particle engineering step of pharmaceutical unit operations. In this chapter, the basic principles of variouspreparation techniques will be discussed in detail. Regardless of processing details, the preparation methods of pharmaceutical nanoparticles mainly concern how to deal with the extra energy related with particle size. Depending on the ways of treating the e103 energy, preparation methods can be classified into two major classes, i.e.. thermodynamic and kinetic approaches. The recent progresses have shown the possibilities of much more complex combinations of different approaches and the use of new types of energy and nanostructures.

  • PDF

진공 저온 분사 공정을 통해 형성된 Fe계 비정질 재료의 적층거동 및 미세구조 변화 관찰 (Deposition Behavior and Microstructure of Fe-based Amorphous Alloy Fabricated by Vacuum Kinetic Spraying Process)

  • 권주혁;박형권;이일주;이창희
    • 한국재료학회지
    • /
    • 제24권1호
    • /
    • pp.60-65
    • /
    • 2014
  • Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.

TEOS/O2용 플라즈마 반응기에서의 미립자 성장에 대한 실험적 분석 (Experimental Analysis on Particle Growth in TEOS/O2 Plasma Reactor)

  • 홍성택;김교선
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.175-179
    • /
    • 2003
  • A study on the particle growth in $TEOS/O_2$ plasma was performed by observing the particle size and its morphology by TEM. The qualitative chemical analysis of particles was also determined by the EDS (Energy Dispersive X-Ray Spectrometer). The effects of process variables such as the plasma on-time and bubbler temperature on the particle growth were investigated. The particle size becomes larger as the plasma on-time because of the longer coagulation, and also as the bubbler temperature increases because of the faster coagulation between particles.

  • PDF