• Title/Summary/Keyword: particle depolarization ratio

Search Result 16, Processing Time 0.018 seconds

Retrieval of the Variation of Optical Characteristics of Asian Dust Plume according to their Vertical Distributions using Multi-wavelength Raman LIDAR System (다파장 라만 라이다 관측을 통한 황사의 이동 고도 분포에 따른 광학적 특성 변화 규명)

  • Shin, Sung-Kyun;Park, Young-San;Choi, Byoung-Choel;Lee, Kwonho;Shin, Dongho;Kim, Young J.;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.597-605
    • /
    • 2014
  • The continuous observations for atmospheric aerosols were conducted during 3 years (2009 to 2011) by using Gwangju Institute of Science and Technology (GIST) multi-wavelength Raman lidar at Gwangju, Korea ($35.10^{\circ}N$, $126.53^{\circ}E$). The aerosol depolarization ratios calculated from lidar data were used to identify the Asian dust layer. The optical properties of Asian dust layer were different according to its vertical distribution. In order to investigate the difference between the optical properties of each individual dust layers, the transport pathway and the transport altitude of Asian dust were analyzed by Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We consider that the variation of optical properties were influenced not only their transport pathway but also their transport height when it passed over anthropogenic pollution source regions in China. The lower particle depolarization ratio values of $0.12{\pm}0.01$, higher lidar ratio of $67{\pm}9sr$ and $68{\pm}9sr$ at 355 nm and 532 nm, respectively, and higher ${\AA}ngstr\ddot{o}m$ exponent of $1.05{\pm}0.57$ which are considered as the optical properties of pollution were found. In contrast with this, the higher particle depolarization ratio values of $0.21{\pm}0.09$, lower lidar ratio of $48{\pm}5sr$ and $46{\pm}4sr$ at 355 nm and 532 nm, respectively, and lower ${\AA}ngstr\ddot{o}m$ exponent of $0.57{\pm}0.24$ which are considered as the optical properties of dust were found. We found that the degree of mixing of anthropogenic pollutant aerosols in mixed Asian dust govern the variation of optical properties of Asian dust and it depends on their altitude when it passed over the polluted regions over China.

Multi-wavelength Raman LIDAR for Use in Determining the Microphysical, Optical, and Radiative Properties of Mixed Aerosols

  • Lee, Kwon-Ho;Noh, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.91-99
    • /
    • 2015
  • The Multi-wavelength Raman LIDAR (MRL) system was developed to enable a better understanding of the complex properties of aerosols in the atmosphere. In this study, the microphysical, optical, and radiative properties of mixed aerosols were retrieved using the discrete aerosol observation products from the MRL. The dust mixing ratio, which is the proportion of dust particles to the total mixed, was derived using the particle depolarization ratio. It was employed in the retrieval of backscattering and extinction coefficient profiles for dust and non-dust particles. The vertical profiles of aerosol optical properties were then used as input parameters in the inversion algorithm for the retrieval of microphysical parameters including the effective radius, refractive index, and the single scattering albedo (SSA). Those products were successfully applied to an analysis of radiative flux using a radiative transfer model. The relationship between the MRL derived extinction and aerosol radiative forcing (ARF) in short-wavelength was assessed over Gwangju, Korea. The results clearly demonstrate that the MRL-derived extinction profiles are a good surrogate for use in the estimation of optical, microphysical, and radiative properties of aerosols. It is considered that the analytical results shown in this study can be used to provide a better understanding of air quality and the variation of local radiative effects due to aerosols.

A Study on the Variation of Aerosol Optical Depth according to Aerosol Types in Northeast Asia using Aeronet Sun/Sky Radiometer Data (AERONET 선포토미터 데이터를 이용한 동북아시아 지역 대기 에어로졸 종류별 광학적 농도 변화 특성 연구)

  • Noh, Youngmin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.668-676
    • /
    • 2018
  • This study has developed a technique to divide the aerosol optical depth of the entire aerosol (${\tau}_{total}$) into the dust optical depth (${\tau}_D$) and the pollution particle optical depth (${\tau}_P$) using the AERONET sun/sky radiometer data provided in Version 3. This method was applied to the analysis of AERONET data observed from 2006 to 2016 in Beijing, China, Seoul and Gosan, Korea and Osaka, Japan and the aerosol optical depth trends of different types of atmospheric aerosols in Northeast Asia were analyzed. The annual variation of ${\tau}_{total}$ showed a tendency to decrease except for Seoul where observation data were limited. However, ${\tau}_D$ tended to decrease when ${\tau}_{total}$ were separated as ${\tau}_D$ and ${\tau}_P$, but ${\tau}_P$ tended to increase except for Osaka. This is because the concentration of airborne aerosols, represented by Asian dust in Northeast Asia, is decreased in both mass concentration and optical concentration. However, even though the mass concentration of pollution particles generated by human activity tends to decrease, Which means that the optical concentration represented as aerosol optical depth is increasing in Northeast Asia.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

Retrieval of Pollen Optical Depth in the Local Atmosphere by Lidar Observations (라이다를 이용한 지역 대기중 꽃가루의 광학적 두께 산출)

  • Noh, Young-Min;Lee, Han-Lim;Mueller, Detlef;Lee, Kwon-Ho;Choi, Young-Jean;Kim, Kyu-Rang;Choi, Tae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Air-borne pollen, biogenically created aerosol particle, influences Earth's radiative balance, visibility impairment, and human health. The importance of pollens has resulted in numerous experimental studies aimed at characterizing their dispersion and transport, as well as health effects. There is, however, limited scientific information concerning the optical properties of airborne pollen particles contributing to total ambient aerosols. In this study, for the first time, optical characteristics of pollen such as aerosol backscattering coefficient, aerosol extinction coefficient, and depolarization ratio at 532 nm and their effect to the atmospheric aerosol were studied by lidar remotes sensing technique. Dual-Lidar observations were carried out at the Gwangju Institute of Science & Technology (GIST) located in Gwagnju, Korea ($35.15^{\circ}E$, $126.53^{\circ}N$) for a spring pollen event from 5 to 7 May 2009. The pollen concentration was measured at the rooftop of Gwangju Bohoon hospital where the building is located 1.0 km apart from lidar site by using Burkard trap sampler. During intensive observation period, high pollen concentration was detected as 1360, 2696, and $1952m^{-3}$ in 5, 6, and 7 May, and increased lidar return signal below 1.5km altitude. Pollen optical depth retrieved from depolarization ratio was 0.036, 0.021, and 0.019 in 5, 6, and 7 May, respectively. Pollen particles mainly detected in daytime resulting increased aerosol optical depth and decrease of Angstrom exponent.

The Study of PM10, PM2.5 Mass Extinction Efficiency Characteristics Using LIDAR Data (라이다 데이터를 이용한 PM10, PM2.5 질량소산효율 특성 연구)

  • Kim, TaeGyeong;Joo, Sohee;Kim, Gahyeong;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1793-1801
    • /
    • 2021
  • From 2015 to June 2020, the backscattering coefficients of 532 and 1064 nm measured using LIDAR and the depolarization ratio at 532 nm were used to separate the backscattering coefficient at 532 nm as three types as PM10, PM2.5-10, PM2.5 according to particle size. The mass extinction efficiency (MEE) of three types was calculated using the mass concentration measured on the ground. The overall mean values of the calculated MEE were 5.1 ± 2.5, 1.7 ± 3.7, and 9.3 ± 6.3 m2/g in PM10, PM2.5-10, and PM2.5, respectively. When the mass concentration of PM10 and PM2.5 was low, higher than average MEE was calculated, and it was confirmed that the MEE decreased as the mass concentration increased. When the MEE was calculated for each type according to the mixing degree of Asian dust, PM2.5-10 was twice at pollution aerosol as high as 2.1 ± 2.8 m2/g, compare to pollution-dominated mixture, dust-dominated mixture, and pure dust of 1.1 ± 1.8, 1.4 ± 3.3, 1.1 ± 1.5 m2/g, respectively. However, PM2.5 MEE showed similar values irrespective of type: 9.4 ± 6.5, 9.0 ± 5.8, 10.3 ± 7.5, and 9.1 ± 9.0 m2/g. The MEE of PM10 was 5.6 ± 2.9, 4.4 ± 2.0, 3.6 ± 2.9, and 2.8 ± 2.4 m2/g in pollution aerosol (PA), pollution-dominated mixture (PDM), dust-dominated mixture (DDM), and pure dust (PD), respectively, and increased as the dust ratio value decreased. Even if the same type according to the same mass concentration or Asian dust mixture was shown, as the PM2.5/PM10 ratio decreased, the MEE of PM2.5-10 decreased and the MEE of PM2.5 showed a tendency to increase.