• Title/Summary/Keyword: partially restrained

Search Result 46, Processing Time 0.02 seconds

An investigation into structural behaviour of modular steel scaffolds

  • Yu, W.K.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.211-226
    • /
    • 2004
  • This paper presents a study on the structural behaviour of modular steel scaffolds through both experimental and numerical investigations. Three one-storey and three two-storey modular steel scaffolds were built and tested to failure in order to examine the structural behaviour of typical modular steel scaffolds. Details of the tests and their test results were presented in this paper. Moreover, an advanced non-linear analysis method was employed to evaluate the load carrying capacities of these scaffolds under different support conditions. Comparisons between the experimental and the numerical results on the structural behaviour of these modular steel scaffolds were also presented. Moreover, the restraining effects of external supports in practical situations were also studied through finite element methods. The predicted load carrying capacities and deformations at failure of these models under partially restrained conditions were found to be close to the experimental results. A codified design method for column buckling with modified slenderness ratios was adopted for practical design of modular steel scaffolds.

Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads

  • Cavdar, Ozlem;Bayraktar, Alemdar;Cavdar, Ahmet;Kartal, Murat Emre
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.499-518
    • /
    • 2009
  • The present paper investigates the stochastic seismic responses of steel structure systems with Partially Restrained (PR) connections by using Perturbation based Stochastic Finite Element (PSFEM) method. A stiffness matrix formulation of steel systems with PR connections and PSFEM and MCS formulations of structural systems are given. Based on the formulations, a computer program in FORTRAN language has been developed, and stochastic seismic analyses of steel frame and bridge systems have been performed for different types of connections. The connection parameters, material and geometrical properties are assumed to be random variables in the analyses. The Kocaeli earthquake occurred in 1999 is considered as a ground motion. The connection parameters, material and geometrical properties are considered to be random variables. The efficiency and accuracy of the proposed SFEM algorithm are validated by comparison with results of Monte Carlo simulation (MCS) method.

Probabilistic analysis of a partially-restrained steel-concrete composite frame

  • Amadio, C.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.35-52
    • /
    • 2008
  • The paper investigates the seismic performance of a Partially-Restrained (PR) steel-concrete composite frame using the probabilistic approach. The analysed frame was tested at the ELSA laboratory of the Joint Research Centre of Ispra (Italy), while the representative beam-to-column composite connections were tested at the Universities of Pisa, Milan and Trento (Italy). The component modelling of both interior and exterior composite joints is described first, including the experimental-numerical validation. The Latin Hypercube method has been used to draw the probabilistic distribution curves of joints, and then the whole PR composite frame has been analysed. Pushover and incremental dynamic analyses have been carried out using the non-linear FE code SAP2000 version 9.1. The fragility and performance curves of the PR composite frame have been determined for four damage limit states.

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Inelastic Buckling Analysis of Partially Restrained Frame (유연 뼈대 구조물의 비탄성 좌굴 해석)

  • Kim Seung Eock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.19-28
    • /
    • 1996
  • 본 논문에서는 유연 연결부를 갖고 있는 이차원 구조물의 비탄성 좌굴해석을 연구하였다. 본 해석을 통하여 구조물의 기하학적, 및 재료적 비선형 뿐만 아니라 유연 연결부의 비선형 효과가 구조물의 거동과 강도에 미치는 영향을 예측할 수 있다. 본 해석 결과는 실험 결과와 비교하였으며 예제해석도 수행하였다.

  • PDF

Probability-based structural response of steel beams and frames with uncertain semi-rigid connections

  • Domenico, Dario De;Falsone, Giovanni;Laudani, Rossella
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.439-455
    • /
    • 2018
  • Within a probabilistic framework, this paper addresses the determination of the static structural response of beams and frames with partially restrained (semi-rigid) connections. The flexibility of the nodal connections is incorporated via an idealized linear-elastic behavior of the beam constraints through the use of rotational springs, which are here considered uncertain for taking into account the largely scattered results observed in experimental findings. The analysis is conducted via the Probabilistic Transformation Method, by modelling the spring stiffness terms (or equivalently, the fixity factors of the beam) as uniformly distributed random variables. The limit values of the Eurocode 3 fixity factors for steel semi-rigid connections are assumed. The exact probability density function of a few indicators of the structural response is derived and discussed in order to identify to what extent the uncertainty of the beam constraints affects the resulting beam response. Some design considerations arise which point out the paramount importance of probability-based approaches whenever a comprehensive experimental background regarding the stiffness of the beam connection is lacking, for example in steel frames with semi-rigid connections or in precast reinforced concrete framed structures. Indeed, it is demonstrated that resorting to deterministic approaches may lead to misleading (and in some cases non-conservative) outcomes from a design viewpoint.

Dissipation of energy in steel frames with PR connections

  • Reyes-Salazar, Alfredo;Haldar, Achintya
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.241-256
    • /
    • 2000
  • The major sources of energy dissipation in steel frames with partially restrained (PR) connections are evaluated. Available experimental results are used to verify the mathematical model used in this study. The verified model is then used to quantify the energy dissipation in PR connections due to hysteretic behavior, due to viscous damping and at plastic hinges if they are formed. Observations are made for two load conditions: a sinusoidal load applied at the top of the frame, and a sinusoidal ground acceleration applied at the base of the frame representing a seismic loading condition. This analytical study confirms the general behavior, observed during experimental investigations, that PR connections reduce the overall stiffness of frames, but add a major source of energy dissipation. As the connections become stiffer, the contribution of PR connections in dissipating energy becomes less significant. A connection with a T ratio (representing its stiffness) of at least 0.9 should not be considered as fully restrained as is commonly assumed, since the energy dissipation characteristics are different. The flexibility of PR connections alters the fundamental frequency of the frame. Depending on the situation, it may bring the frame closer to or further from the resonance condition. If the frame approaches the resonance condition, the effect of damping is expected to be very important. However, if the frame moves away from the resonance condition, the energy dissipation at the PR connections is expected to be significant with an increase in the deformation of the frame, particularly for low damping values. For low damping values, the dissipation of energy at plastic hinges is comparable to that due to viscous damping, and increases as the frame approaches failure. For the range of parameters considered in this study, the energy dissipations at the PR connections and at the plastic hinges are of the same order of magnitude. The study quantitatively confirms the general observations made in experimental investigations for steel frames with PR connections; however, proper consideration of the stiffness of PR connections and other dynamic properties is essential in predicting the dynamic behavior.

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

Elastic distortional buckling of overhanging beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.37-47
    • /
    • 1996
  • The paper considers the elastic distortional buckling of overhanging beams, which consist of an internal segment with a cantilevered segment continuous over an internal support. The beams were considered loaded by a concentrated load at the cantilever tip, and the beams were either partially restrained or laterally restrained over the internal support. An efficient line-type finite element developed previously by the author was modified to incorporate loading remote from the shear centre, as well as to allow for lateral buckling without distortion. Buckling loads were obtained for a range of geometry when the load was placed on the top flange, at the shear centre or on the bottom flange. Buckling mode shapes were also obtained, and conclusions drawn regarding the influence of distortion on the overall buckling load.