• Title/Summary/Keyword: partially premixed structure

Search Result 34, Processing Time 0.019 seconds

An Experimental Study on the Combustion Characteristics with Hydrogen Enrichment in a Dump Combustor (수소 혼합에 따른 덤프 연소기내의 연소 특성에 관한 실험적 연구)

  • Kim, Dae-Hee;Hong, Jung-Goo;Shin, Hyun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2977-2983
    • /
    • 2008
  • The combustion characteristics of a partially premixed flame in a dump combustor were studied to determine the effects of hydrogen enrichment in propane. Bluff-body was used for flame stabilization. Fuel mixtures containing a hydrogen mole fraction ranging from 0.1 to 0.5 were burnt at ambient pressure within a quartz chamber. Tests were carried out keeping the total reactant flow rate by adjusting the fuel and air flow rates. The fluctuations of pressure were measured by piezoelectric pressure sensor. The instantaneous flame structure and OH chemiluminescence images were described by High-speed Intensified Charged Coupled Device (HICCD) camera and Intensified Charged Coupled Device (ICCD) camera. The present results show that hydrogen enrichment in fuel changed the location of primary reaction zone from inner recirculation zone to turbulent shear layer and pressure signal. The reason is that chemical aspects take precedence over flow aspects in the hydrogen-enriched flame.

  • PDF

Influence of Combustor Pressure on Combustion Characteristics and Local Flame Reaction in the Partially Premixed Flames with $CH_4$, $C_2H_4$ and $C_3H_8$ (부분 예혼합 화염의 연소실 압력이 연료별(메탄, 에틸렌, 프로판) 연소특성과 국소 화염 반응에 미치는 영향)

  • Kim, Jong-Ryul;Son, Je-Ha;Noh, Young-Gu;Kim, Yun-Dong;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • An experimental study was conducted for three different fuels($CH_4$, $C_2H_4$ and $C_3H_8$) to investigate the combustion characteristics and the local reaction intensity with combustor pressure(-30kpa~30kpa). Regardless of fuel composition, EINOx decreased with reducing pressure decreased. Structure and combustion characteristics were also largely affected by the combustor pressure. In addition, reaction intensity in terms of the changing combustor pressure and equivalence ratio was investigated. Combustion reaction in higher than atmospheric pressure was very active than the lower combustor pressure. When the combustor pressure is lower than the atmospheric pressure, the overall reactivity is noticeably enhanced due to the elevated diffusion process of unburned mixture. It was found that the combustion characteristics of the methane and propane flames are considerably influenced by the pressure while those of ethylene flame are less sensitive to the combustor pressure.

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

The Characteristics of Unconfined Hydrogen Diffusion Flames in Supersonic Air Flows (초음속 공기 유동장에서의 수소 확산 화염 특성에 대한 연구)

  • 김제흥;심재헌;김지호;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.78-86
    • /
    • 2000
  • The objective of this research is to understand the characteristics of a nonpremixed, turbulent, hydrogen jet flame which is stabilized in Mach 1.8 coflowing air flows. In order to investigate the flame structure, flame lengths and fuel trajectories were measured by using direct photography, acetone PLIF, Mie scattering techniques, and numerical simulation. Effect of increasing air velocity was investigated when fuel velocity is fixed. The subsonic flame length was decreased drastically, however the supersonic flame length was increased slowly Then the change of flame blow out characteristics was observed as varying fuel nozzle lip thickness. The flame stability can be increased when fuel nozzle lip thickness was increased, which indicates that the minimum fuel lip thickness ratio is required for the stable supersonic flames. Also, it is found that fuel jet is blocked by high pressure zone and low scattering zone is made. Then the fuel that was moving along the recirculation zone had longer residence time within the supersonic flames, which made partially premixed zone.

  • PDF