Oehlers, D.J.;Nguyen, N.T.;Ahmed, M.;Bradford, M.A.
Structural Engineering and Mechanics
/
제5권5호
/
pp.553-563
/
1997
A procedure is being developed for bolting plates to the sides of existing reinforced concrete beams to strengthen and stiffen them. Unlike standard composite steel and concrete beams in which there is longitudinal-partial-interaction at the steel/concrete interface (that is slip along the length of the beam), composite bolted side-plated reinforced-concrete beams are unique in that they also exhibit transverse-partial-interaction, that is slip transverse to the length of the beam. In this work, the fundamental mathematical models for transverse-partial-interaction and its interaction with longitudinal-partial-interaction are developed. The fundamental models are then further developed to determine the number of connectors required to resist the transverse forces and to limit the degree of transverse-partial-interaction in bolted side-plated reinforced concrete beams.
Existing reinforced concrete (RC) beams can be strengthened with externally bolted steel plates to the sides of beams. The effectiveness of this type of bolted side-plate (BSP) beam can however be affected by partial interaction between the steel plates and RC beams due to the mechanical slip of bolts. To avoid over-estimation of the flexural strength and ensure accurate prediction of the load-deformation response of the beams, the effect of partial interaction has to be properly considered. In this paper, a special non-linear macro-finite-element model that takes into account the effects of partial interaction is proposed. The RC beam and the steel plates are modelled as two different elements, interacting through discrete groups of bolts. A layered method is adopted for the formulation of the RC beam and steel plate elements, while a special non-linear model based on a kinematic hardening assumption for the bolts is used to simulate the bolt group effect. The computer program SiBAN was developed based on the proposed approach. Comparison with the available experimental results shows that SiBAN can accurately predict the partial interaction behaviour of the BSP beams. Further numerical simulations show that the interaction between the RC beam and the steel plates is greatly reduced by the formation of plastic hinges and should be considered in analyses of the strengthened beams.
This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.
Seracino, Rudolf;Oehlers, Deric J.;Yeo, Michael F.
Structural Engineering and Mechanics
/
제13권4호
/
pp.455-464
/
2002
There is a growing demand to assess the remaining strength and endurance of existing composite steel and concrete bridge beams due to the aging infrastructure, increases in permissible vehicle weights and increases in their frequencies. As codes are generally dedicated to the design of new structures, new procedures are required to aid in the assessment of existing bridges to ensure that they are utilised to the full. In this paper, simple expressions are presented to perform partial-interaction analyses directly from full-interaction analyses, so that the beneficial effect of partial-interaction on the shear forces on the shear connectors can be utilised in assessment to extend the fatigue life of simply supported bridge beams and to determine the effect of remedial work if necessary. Use of the assessment technique is described by way of an illustrative example.
일반적으로 강콘크리트 합성형교는 불완전합성에 대한 해석의 복잡함 때문에 강재와 콘크리트 계면에서의 상대변위가 발생하지 않는 완전합성형으로 설계된다. 그러나, 이러한 설계는 기존 강합성형 의 거동을 평가하는 경우 실제 구조물의 내하력과 내구성을 정확하게 도출하지 못하게 된다. 이러한 경우에는 불완전합성이론을 이용하여 구조물의 거동을 정확히 반영해야 한다. 본 연구에서는 집중하중을 받는 단순합성형교에 대하여 처짐 거동을 고려한 불완전합성곡률의 변화양상을 확인하기 위하여 유한요소해석 모델을 이용하여 전단연결재의 배치간격과 배치열수 그리고 콘크리트 탄성계수를 매개변수로 선택하여 해석을 수행하였다. 본 연구의 결과로서 합성형의 처짐이 증가할수록 불완전합성 정도가 증가함을 알 수 있었으며, 콘크리트 슬래브에서 균열이 발생으로 인한 강성 및 강도의 감소가 합성정도에 큰 영향을 미치는 것을 알 수 있었다.
Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
Steel and Composite Structures
/
제25권5호
/
pp.625-638
/
2017
This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.
This paper presents a generic modelling of composite steel-concrete beams with elastic shear connection. It builds on the well-known seminal technique of Newmark, Siess and Viest, in order to formulate the partial interaction formulation for solution under a variety of end conditions, and lends itself well for modification to enable direct quantification of effects such as shrinkage, creep, and limited shear connection slip capacity. This application is possible because the governing differential equations are set up and solved in a fashion whereby inclusion of the kinematic and static end conditions merely requires a statement of the appropriate constants of integration that are generated in the solution of the linear differential equations. The method is applied in the paper for the solution of the well-studied behaviour of simply supported beams with partial interaction, as well as to provide solutions for a beam encastr$\acute{e}$ at its ends, and for a propped cantilever.
The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.
The present paper is the follow-on of a former work in which the influence of the gas-surface interaction models was evaluated on the aerodynamic coefficients of an aero-space-plane and on a section of its wing. The models by Maxwell and by Cercignani-Lampis-Lord were compared by means of Direct Simulation Monte Carlo (DSMC) codes. In that paper the diffusive, fully accommodated, semi-specular and specular accommodation coefficients were considered. The results pointed out that the influence of the interaction models, considering the above mentioned accommodation coefficients, is pretty strong while the Cercignani-Lampis-Lord and the Maxwell models are practically equivalent. In the present paper, the comparison of the same models is carried out considering the dependence of the accommodation coefficients on the angle of incidence (or partial accommodation coefficients). More specifically, the normal and the tangential momentum partial accommodation coefficients, obtained experimentally by Knetchel and Pitts, have been implemented. Computer tests on a NACA-0012 airfoil have been carried out by the DSMC code DS2V-64 bits. The airfoil, of 2 m chord, has been tested both in clean and flapped configurations. The simulated conditions were those at an altitude of 100 km where the airfoil is in transitional regime. The results confirmed that the two interaction models are practically equivalent and verified that the use of the Knetchel and Pitts coefficients involves results very close to those computed considering a diffusive, fully accommodated interaction both in clean and flapped configurations.
An exact dynamic analytical method for free vibrations of continuous partial-interaction composite beams is proposed based on the Timoshenko beam theory. The main advantage of this method is that the independent shear deformations and rotary inertia of sub-beams are considered, which is more in line with the reality. Therefore, the accuracy of eigenfrequencies obtained by this method is significantly improved, especially for higher order modes, compared to the existing methods where the rotary angles of both sub-beams are assumed to be equal irrespective of the differences in the shear stiffness of each sub-beam. Furthermore, the solutions obtained by the proposed method are exact owing to no introduction of approximated displacement and force fields in the derivation. In addition, an exact analytical solution for the case of simply supported is obtained. Based on this, an approximate expression for the fundamental frequency of continuous partial-interaction composite beams is also proposed, which is useful for practical engineering applications. Finally, the practicability and effectiveness of the proposed method and the approximate expression are explored using numerical and experimental examples; The influence factors including the interfacial interaction, shear modulus ratio, span-to-depth ratio, and side-to-main span length ratio on the eigenfrequencies are presented and discussed in detail.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.