• Title/Summary/Keyword: partial strength

Search Result 659, Processing Time 0.023 seconds

Relationship among Stress, Anxiety-depression, Muscle Tone, and Hand Strength in Patients with Chronic Stroke: Partial Correlation

  • Kim, Myoung-Kwon;Choe, Yu-Won;Kim, Seong-Gil;Choi, Eun-Hong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.27-33
    • /
    • 2018
  • PURPOSE: This study was conducted to identify the relationships among stress response inventory, hospital anxiety and depression, muscle tone and stiffness, and hand strength in chronic stroke patients. METHODS: A total of 14 chronic stroke patients voluntarily agreed to this experiment and were included in this study. All measurements were performed in one day and in a room without noise. The tests conducted in this study were as follows: muscle tone and stiffness of the upper trapezius hand grip measurement. Subjects were also asked to complete surveys describing the following: stress response inventory and hospital anxiety and depression scale. RESULTS: There were significant correlations among stress response inventory and hospital anxiety and depression, stress response inventory and hand strength, and hospital anxiety and depression and hand strength (P<.05). There were high positive correlations between stress response inventory and hospital anxiety and depression (r=.979), while there were moderate negative correlations between stress response inventory and hand strength (r=-.415) and between hospital anxiety and depression and hand strength (r=-.420). CONCLUSION: The results of the present study indicate that there is a relationship among stress response inventory, hospital anxiety and depression, and hand strength in patients with chronic stroke.

Association between Hand Grip Strength and Gait Variability in Elderly: Pilot Study (노인의 악력과 보행 가변성 간의 연관성: 예비연구)

  • Lee, Do-Youn;Lee, Yungon;Shin, Sunghoon
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to establish an association between grip strength and gait variability in the elderly. Methods: The participants in this experiment (n = 20) were aged 65 or older. Power grip and lateral pinch forces were obtained in grip strength tests, and spatiotemporal gait parameters were collected from IMU sensors during 6 min actual walking to test the gait of participants. The collected gait parameters were converted to coefficient of variation (CV) values. To confirm the association between grip strength and gait variability, a partial correlation analysis was conducted in which height, weight, and gait speed were input as controlling variables. Results: Grip power showed a significant negative correlation with the stride length CV (r = -0.52), and the lateral pinch force showed a significant negative correlation with the stance CV (r = -0.65) and swing CV (r = -0.63). Conclusion: This study reveals that gait variability decreases as grip strength increases, although height, weight, and gait speed were controlled. Thus, grip strength testing, a simple aging evaluation method, can help identify unstable gait in older adults at risk of falling, and grip strength can be utilized as a non-invasive measurement method for frailty management and prevention.

The characteristics of compressive strength resistance of concrete combined with corrosion inhibitors and mineral admixtures under simulated tidal condition (인공 해수 간헐 조건에서의 방청제 및 혼화재를 사용한 콘크리트 압축강도 및 저항의 특성)

  • 이용은;장태순;양우석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.641-646
    • /
    • 1998
  • The structures exposed to marine environment do not show long-term durability due to corrosion of steel and deterioration of concrete by the attack of various salts dissolved in sea water. In this study, Partial substitution of cement with fly ash(20%) or blast furnace slag(40%) was made together with the addition of 4 different corrosion-inhibitors, as a protective measure of concrete structures against chemical attack of salts. Combined effects of mineral and corrosion-inhibiting admixtures were tested by measuring the resistance and compressive strength of concretes under the simulated tidal condition, which consists of alternating 12 hour periods of immersion in artificial sea water and drying in air. Both the strength and concrete resistance were found to decrease in following order, regardless of the corrosion inhibitors the concretes with blast furnace slag, those with fly ash and those without any mineral admixtures. The interrelation between compressive strength of concrete and resistance was investigated.

  • PDF

Partial replacement of fine aggregates with laterite in GGBS-blended-concrete

  • Karra, Ram Chandar;Raghunandan, Mavinakere Eshwaraiah;Manjunath, B.
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.221-230
    • /
    • 2016
  • This paper presents a preliminary study on the influence of laterite soil replacing conventional fine aggregates on the strength properties of GGBS-blended-concrete. For this purpose, GGBS-blended-concrete samples with 40% GGBS, 60% Portland cement (PC), and locally available laterite soil was used. Laterite soils at 0, 25, 50 and 75% by weight were used in trails to replace the conventional fine aggregates. A control mix using only PC, river sand, course aggregates and water served as bench mark in comparing the performance of the composite concrete mix. Test blocks including 60 cubes for compression test; 20 cylinders for split tensile test; and 20 beams for flexural strength test were prepared in the laboratory. Results showed decreasing trends in strength parameters with increasing laterite content in GGBS-blended-concrete. 25% and 50% laterite replacement showed convincing strength (with small decrease) after 28 day curing, which is about 87-90% and 72-85% respectively in comparison to that achieved by the control mix.

Fracture energy and tension softening relation for nano-modified concrete

  • Murthy, A. Ramachandra;Ganesh, P.;Kumar, S. Sundar;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1201-1216
    • /
    • 2015
  • This paper presents the details of size independent fracture energy and bi-linear tension softening relation for nano modified high strength concrete. Nano silica in powder form has been used as partial replacement of cement by 2 wt%. Two popular methods, namely, simplified boundary effect method of Karihaloo et al. (2003) and RILEM (1985) fracture energy with P-${\delta}$ tail correction have been employed for estimation of size independent fracture energy for nano modified high strength concrete (compressive strength ranges from 55 MPa to 72 MPa). It is found that both the methods gave nearly same values, which is an additional evidence that either of them can be employed for determination of size independent fracture energy. Bi-linear tension softening relation corresponding to their size independent fracture energy has been constructed in an inverse manner based on the concept of non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams.

Properties of Fire Resistance of High Performance Concrete Using Cellulose Fiber (셀룰로오스 섬유를 사용하는 고성능 콘크리트의 내화특성)

  • Kim Kyoung Min;Joo Eun Hi;Hwang Yin Seong;Jee Suk Won;Lee Seong Yeun;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.557-560
    • /
    • 2004
  • This paper is to investigate the fire endurance of high performance concrete with the contents of cellulose fiber. According to test results, the use of CL lead to decrease in fluidity. For compressive strength, the use of CL had no influence on compressive strength. For spalling properties, plain concrete showed a severe spalling failure. The use of CL protected from spalling of concrete, but most specimens had scale failure and partial destruction of specimens. This is due to the insufficient fiber length and diameter of CL fiber, which was unable to discharging the internal vapour pressure. For this reason, CL fiber can not be used to protect from spalling oh high performance concrete. Residual strength was observed to $5\~7\%$ of original strength.

  • PDF

Study on the horizontally perpendicular separation casting method of construction for execution improvement of the high strength concrete (시공성 향상을 위한 고강도 콘크리트 분리타설재 개발에 관한 연구)

  • Choi, Jong-Moon;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.61-62
    • /
    • 2011
  • In recent years, domestic construction companies have developed a 200MPa grade high-strength concrete and promoting the superiority of each technique. However, applying design and construction practices of developed high-strength concrete are weak. Most applications is limited to partial use and then the actual examples only used as a layer of high-rise building outrigger with casting some test on basement' vertical structures. In this study, developed materials for separation casting through joint research have been examined economy and others by field application and improving the workability.

  • PDF

Analytical Study of the Effect of Full and Partial Masonry Infills on the Seismic Performance of School Buildings (조적채움벽 및 허리벽이 학교 건물 내진 성능에 미치는 영향에 대한 해석적 연구)

  • Kim, Tae Wan;Min, Chan Gi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.197-207
    • /
    • 2013
  • The seismic performance of school buildings has been a matter of common interest socially and academically. The structural system of the school buildings is representative of the domestic low-rise reinforced concrete moment resisting frames, which apply extensively infills in their masonry walls. The masonry infilled walls are divided into full masonry infill in the transverse direction and partial masonry infill in the longitudinal direction. The masonry infilled walls are usually not included in structural analysis during the design process, but affect significantly the seismic performance because they behave with surrounding frames simultaneously during earthquakes. Many researchers have studied the effect of the masonry infilled walls, but several issues have been missed such as the increase of asymmetry by adding the full masonry infill, the size of the mean strength of the full masonry infill, and short column effect by the partial masonry infill. The issues were analytically investigated and the results showed that they should be checked at least by nonlinear pushover analysis in the seismic performance evaluation process. The results also confirm the weakness of the guideline of Korean Educational Development Institute where the seismic performance is basically assessed without structural analysis.

Study of Design & CFD Analysis for Partial DPF Utilizing Metal Foam (금속폼을 이용한 Partial DPF의 설계 및 전산유체해석 연구)

  • Yoon, Cheon-Seog;Cho, Gyu-Baek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • DPF(Diesel Particulate Filter)s have been used to reduce the most of PM(particulate matters) from the exhaust emissions of diesel engine vehicles. Metal foam is one of promising materials for the DPFs due to its cost effectiveness, good thermal conductivity and high mechanical strength. It can be fabricated with various pore sizes and struct thickness and coated with catalytic wash-coats with low cost. In order to design metal foam filter and analyze the flow phenomena, pressure drop and filtration experiment are carried out. Partial DPF which has PM reduction efficiency of more than 50 % is designed in this paper. Also, CFD analysis are performed for different configurations of clean filters in terms of pressure drop, uniformity index, and velocity magnitude at face of filter. Filter thickness and the gap between front and rear filters are optimized and recommended for manufacturing purpose.

Numerical Analysis of Surface Discharge due to Particles Attached to the GIS spacer (GIS 스페이서에 파티클 부착시 연면방전과 전계해석)

  • Jang, D.G.;Lee, J.H.;Kwak, H.R.;Park, H.Y.;Kim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1788-1790
    • /
    • 2003
  • GIS is a typical power equipment with higher reliability. It is compact and safe because all the energized parts are enclosed by a sealed cylindrical tank which is filled with $SF_6$. Generally gas insulated power equipments like GIS are designed to have sufficient electrical strength to prevent partial discharges under normal operating condition. Despite of the careful processes in manufacturing, transporting and assembling, voids or particles can be created, resulting in partial discharges at electrically weak points. The key factors causing partial discharges in GIS are; particles, voids in solid insulation, protrusions, poor contact of metal components, etc. The particle can be attached on; spacers, electrodes, internal wall of the GIS tank. It also moves in GIS freely. Most of partial discharges are likely to occur when particles are attached to spacers. In this paper, the electrical characteristics of a surface discharge were investigated under various conditions by using simulation program of FEMLAB.

  • PDF