• Title/Summary/Keyword: partial safety factors

Search Result 98, Processing Time 0.027 seconds

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Evaluation of Partial Safety Factors for Armor Units of Coastal Structures (피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.336-344
    • /
    • 2007
  • A method is developed to evaluate partial safety factors for armor units, by which uncertainties of random variables in reliability function as well as wave height distribution with service periods could take into account straightforwardly. It is found that partial safety factors for resistance and wave height are correctly increased with improving target levels on failure of coastal structures at the same return and service periods. Therefore, it nay be possible to determine design variables through the same processes as those of deterministic method by using the partial safety factors for resistance and wave height evaluated in this paper, since uncertainties of random variables and the effects of service periods and target probability failure are directly considered in the processes of evaluation of partial safety factors.

Evaluation of partial safety factors of Hudson formula for Tetrapod armor units constructed in Korea (국내에서 시공된 Tetrapod 피복재에 대한 Hudson 공식의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.345-356
    • /
    • 2009
  • Tetrapod has been used as the armor blocks of most rubble mound breakwaters constructed in Korea. The Hudson formula has been widely used in the design of breakwater armor blocks in Korea. In the present study, we calculate the load and resistance partial safety factors of the Hudson formula for Tetrapod armors. The partial safety factors were calculated for the typical breakwater cross-sections of 12 trade harbors and 8 coastal harbors in Korea. The mean and standard deviation of them were also calculated. The mean values were compared with the partial safety factors of US Army (2006). The load and resistance factors are slightly smaller and larger, respectively, than the US Army values. However, the overall safety factors obtained by multiplying the load and resistance factors are close to the US Army values. The result of the present study could be used as the basic data to propose authorized partial safety factors in the future.

Reliability Analysis and Evaluation of Partial Safety Factors for Sliding of Caisson Breakwaters in Korea (국내 케이슨 방파제의 활동에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.278-289
    • /
    • 2009
  • In the present study, we evaluated the target reliability indices and partial safety factors for caisson sliding of a vertical breakwater. The average of the reliability indices of existing breakwaters was proposed as the target reliability index for the breakwater of normal safety level. The target reliability indices of high and low safety levels were also proposed based on the analysis of breakwaters in Korea and Japan. The partial safety factors were then proposed for each safety level by averaging the values calculated for 12 breakwater crosssections in Korea. The appropriateness of the proposed partial safety factors was partly verified by showing that the reliability index calculated by using the present partial safety factors is located between those of mild and steep bottom slopes of JPHA(2007). The proposed partial safety factors were inversely used to calculate the caisson width and reliability index of existing breakwaters. While the reliability indices of existing breakwaters designed by the deterministic method show a large variation, those designed by the partial safety factor method show a small variation. This indicates that the partial safety factor method allows a consistent design for given target probability of failure.

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.

Analysis of Probabilities of Failure and Partial Safety Factors of Armor Units on Tranding and Coastal Harbors (무역항 및 연안항 피복재의 파괴확률과 부분안전계수 해석)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.157-165
    • /
    • 2008
  • Level II AFDA and Level III MCS reliability models are applied to analyze the stability of armor units on trading and coastal harbors in Korea. Hudson's formula and Van der Meer's formula are used in this reliability analysis. Also, probability density functions of reliability index and probability of failure are derived by the additional analysis. In addition, the partial safety factors of all harbors related to armor units can be straightforwardly evaluated by the inverse-reliability method. The upper and lower limits and average level of partial safety factors can be statistically investigated with the results of all cases applied in this paper. Therefore, it may be possible to design armor units of new breakwaters including the uncertainty of random variable and target level by using the present results.

  • PDF

Causal Relationship between the Risk-inducing Factors and Safety Inspection and Accident Reduction in Small Construction Sites (소규모 건설현장에서 위험유발요인과 안전점검이 재해 저감 대책에 미치는 인과 관계)

  • Moon, Pil-jae;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.55-70
    • /
    • 2020
  • This study aims to identify the influence of risk-inducing factors and safety inspection on the measures of reducing accidents among workers of building structures in small construction sites. The result can be summarized as follows: First, as for the influence of risk-inducing factors on human factors, preparation for work, disintegrating molds, taking follow-up measures, and keeping records, have statistically significant influences. Therefore, it can be said that safety inspection has a partial mediating effect in the relationship between risk-inducing factors and human factors. Second, as for the influence of risk-inducing factors on facility factors, preparation for work, and taking follow-up measures influenced significantly. This indicates that safety inspection has a partial mediating effect in the relationship between risk-inducing factors and facility factors. Third, as for the influence of risk-inducing factors on management factors, the installation of shores and risk assessment are found to have significant effects. This shows that safety inspection has a partial mediating effect in the relationship between risk-inducing factors and management factors. Fourth, the influence of risk-inducing factors on work factors was significant only in the installation of shores. This indicates that safety inspection has a completely mediating effect in the relationship between risk-inducing factors and work factors. Finally, in the relationship between risk-inducing factors and accident reduction measures, preparation for work, installation of shores, and taking follow-up measures showed significantly positive influences. In contrast, keeping records has a significant negative influence. Thus, safety inspection has a partial mediating effect in the relationship between risk-inducing factors and management factors.

Reliability Analysis and Evaluation of Partial Safety Factors of Breakwater Armor stones Considering Correlation between Wave Height and Wave Steepness (파고와 파형경사의 상관성을 고려한 피복석의 신뢰성 해석 및 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.3
    • /
    • pp.300-309
    • /
    • 2008
  • The partial safety factors of armor stones have been calculated on the assumption that all random variables are independent one another. However, wave height and wave steepness are not independent in the van der Meer's formula of armor stones but they are correlated. In the present study, we calculated the partial safety factors considering the correlation and compared them with those of other researchers who did not consider the correlation. The correlation between wave height and steepness is closely related to the variability of wave period. As the variability of wave period decreases, the correlation between wave height and steepness becomes strong, and hence the calculation results with and without consideration of the correlation show more difference. Therefore, the correlation should be taken into account in the calculation of partial safety factors in the area where the variability of wave period is small.

Evaluation of Partial Safety Factors of Armor Units by Inverse-Reliability Analysis (역해석법에 의한 피복재의 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.149-156
    • /
    • 2008
  • A reliability model of Level II AFDA is developed to analyze the stability of armor units on the sloped coastal structures. Additionally, the partial safety factors of random variables related to armor units can be straightforwardly evaluated by applying the inverse-reliability method in which influence coefficients and uncertainties of random variables, and target probability of failure are combined directly. In particular, a design equation for armor units is derived in terms of the same criteria as deterministic design method in order to apply the reliability-based design method of Level I without some understanding to the reliability analysis. Finally, it is confirmed that several results redesigned by the reliability-based design method of Level I have satisfactorily agreement with results of CEM as well as those of Level II AFDA.

  • PDF

A partial factors methodology for structural safety assessment in non-linear analysis

  • Castro, Paula M.R.P.;Delgado, Raimundo M.;Cesar de Sa, Jose M.A.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.31-53
    • /
    • 2005
  • In the present structural codes the safety verification is based on a linear analysis of the structure and the satisfaction of ultimate and serviceability limit states, using a semi-probabilistic security format through the consideration of partial safety factors, which affect the action values and the characteristic values of the material properties. In this context, if a non-linear structural analysis is wanted a difficulty arises, because the global safety coefficient, which could be obtained in a straightforward way from the non-linear analysis, is not directly relatable to the different safety coefficient values usually used for the different materials, as is the case for reinforced concrete structures. The work here presented aims to overcome this difficulty by proposing a methodology that generalises the format of safety verification based on partial safety factors, well established in structural codes within the scope of linear analysis, for cases where non-linear analysis is needed. The methodology preserves the principal assumptions made in the codes as well as a reasonable simplicity in its use, including a realistic definition of the material properties and the structural behaviour, and it is based on the evaluation of a global safety coefficient. Some examples are presented aiming to clarify and synthesise all the options that were taken in the application of the proposed methodology, namely how to transpose the force distributions obtained with a non-linear analysis into design force distributions. One of the most important features of the proposed methodology, the ability for comparing the simplified procedures for second order effects evaluation prescribed in the structural codes, is also presented in a simple and systematic way. The potential of the methodology for the development and assessment of alternative and more accurate procedures to those already established in codes of practice, where non-linear effects must be considered, is also indicated.