• Title/Summary/Keyword: partial rupture

Search Result 80, Processing Time 0.02 seconds

Study on Tensile Properties of Carbon Fiber Reinforced Polymers (CFRP) Laminate with Strain Distribution (변형률 분포를 가진 탄소섬유복합체의 인장특성에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.25-33
    • /
    • 2020
  • To investigate the relationship between strain distribution and tensile properties of brittle material, five types of tensile coupon of carbon fiber reinforced polymer (CFRP) modified the tab portion in order to have a strain distribution including S0, SD1, SD2, SV1, SV2 were tested. The ultimate stress and strain of SD2 and SV2 which was intended to have larger strain distribution were smaller than those of SD1 and SV1, that was more clearly shown in the test results of the symmetric coupons (SV series) than the asymmetric coupons (SD series). In addition, the ultimate stress and strain of most coupons with strain distribution in this study were decreased when compared to the control group with uniform strain. These results were analyzed in various ways through 1) the average of the strain values directly measured by the strain gages, 2) the converted strain calculated by dividing the total deformation by the effective length, and 3) the ultimate effective strain derived from both the elastic modulus and the ultimate load. The values measured by strain gage indicates response of the local region precisely, but it does not represent the response from whole section. However, the converted strain and effective strain can supplement disadvantage of gage because they represent the average response of whole section. In particular, the effective strain can provide rupture strain conservatively, which can be utilized in practice, when the value obtained by strain gage was not effective due to gage damage or abnormal gage readings near ultimate load. This value provides a value that can be used even when partial rupture has occurred and is reasonably useful for specimens with strain distribution.

An Evaluation of the Impact of Ammonium Nitrate Explosion Occurred in Beirut Port (베이루트항에서 발생한 질산암모늄 폭발에 의한 영향 평가)

  • Yong-Kyun Yoon
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • On August 4, 2020, 2750 tons of ammonium nitrate stored in a storage warehouse at the Port of Beirut exploded. This explosion is said to be the largest ammonium nitrate explosion ever. By applying the TNT equivalency method, TNT equivalent amount corresponding to the explosion energy of 2750 tons of ammonium nitrate was calculated, and it is found to be 856 tons. Overpressure and impulse were calculated in a range up to 3600 m from the blast using the Kingery-Bulmash explosion parameter calculator tool. As the distance from the explosion center increases, the overpressure and impulse decrease exponentially, but the overpressure decreases more significantly, showing that overpressure is more affected by distance than the impact. As a result of applying the damage criteria to evaluate the effects of overpressure and impulse on the structure, the critical distances at which partial collapse, major damage, and minor damage to the structure occur are found to be approximately 500, 800, and 2200 m from the center of the explosion, respectively. The probit function was applied to evaluate the probability of damage to structures and human body. The points where the probability of collapse, major damage, minor damage, and breakage of window-panes to structures are greater than 50% are found to be approximately 500, 810, 2200, and 3200 m, respectively. For people within 200 m from the center of the explosion, the probability of death due to lung damage is more than 99%, and the 50% probability of eardrum rupture is approximately 300 m. The points with a 100% probability of death due to skull rupture and whole body impact due to whole body displacement are evaluated to be 300 and 100 m, respectively.

Clinical Results of Distal Femoral Osteotomy for Treatment of Grade 4 Medial Patella Luxation with Concurrent Distal Femoral Varus in Small Breeds Dogs: 13 Cases

  • Roh, Yoon-Ho;Jung, Jin-Ho;Lee, Je-Hun;Jeong, Jae-Min;Jeong, Seong Mok;Lee, HaeBeom
    • Journal of Veterinary Clinics
    • /
    • v.37 no.3
    • /
    • pp.135-140
    • /
    • 2020
  • The purpose of this study was to determine the outcome of distal femoral osteotomy for distal femoral varus and medial patellar luxation (MPL) grade 4 in small-breed dogs. Radiographs and medical records were reviewed to collect data and plan the surgery in small-breed dogs with MPL grade 4. Computed tomography (CT) imaging was also performed in cases of severe bone deformities. Signalment, weight, medial patellar luxation and lameness grade, radiographic bone union, complications, pre- and postoperative femoral varus angle, passive range of motion, static weight bearing distribution and visual analogue scale scores were recorded. Thirteen corrective distal femoral osteotomies were performed with ancillary and additional procedures in 9 dogs; 4 dogs had staged bilateral procedures; and four stifles were suspected to have partial or complete rupture of the cranial cruciate ligament. One stifle underwent patellar groove replacement. The mean ± SD pre- and postoperative femoral varus angles were 109.15°± 3.71° and 96.30°± 2.97°, respectively. Significant improvements in passive range of motion, thigh circumference and visual analogue scale (VAS) scores were observed. There was no reluxation of the patella. This study suggests that distal femoral osteotomy with traditional and additional procedures provided satisfactory outcomes in patient healing and functional recovery in small-breed dogs with excessive femoral varus angles.

Creep and Oxidation Behaviors of Alloy 617 in High Temperature Helium Environments with Various Oxygen Concentrations (산소 농도에 따른 Alloy 617의 고온헬륨환경에서의 크립 및 산화거동)

  • Koo, Jahyun;Kim, Daejong;Jang, Changheui
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Wrought nickel-base superalloys are being considered as the structural materials in very-high temperature gas-cooled reactors. To understand the effects of impurities, especially oxygen, in helium coolant on the mechanical properties of Alloy 617, creep tests were performed in high temperature flowing He environments with varying $O_2$ contents at 800, 900, and $1000^{\circ}C$. Also, creep life in static He was measured to simulate the pseudo-inert environment. Creep life was the longest in static He, while the shortest in flowing helium. In static He, impurities like $O_2$ and moisture were quickly consumed by oxidation in the early stage of creep test, which prevented further oxidation during creep test. Without oxidation, microstructural change detrimental to creep such as decarburization and internal oxidation were prevented, which resulted in longer creep life. On the other hand, in flowing He environment, surface oxides were not stable enough to act as diffusion barriers for oxidation. Therefore, extensive decarburization and internal oxidation under tensile load contributed to premature failure resulting in short creep life. Limited test in flowing He+200ppm $O_2$ resulted in even shorter creep life. The oxidation samples showed extensive spallation which resulted in severe decarburization and internal oxidation in those environments. Further test and analysis are underway to clarify the relationship between oxidation and creep resistance.

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmHEC) in the presence of SDS

  • Tirtaatmadija, Viyada;Cooper-white, Justin J.;Gason, Samuel J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.189-201
    • /
    • 2002
  • The interaction between hydrophobically modified hydroxyethyl cellulose (hmHEC), containing approximately 1 wt% side-alkyl chains of $C_{16}$, and an anionic sodium dodecyl sulphate (SDS) surfactant was investigated. For a semi-dilute solution of 0.5 wt% hmHEC, the previously observed behaviour of a maximum in solution viscosity at intermediate SDS concentrations, followed by a drop at higher SDS concentrations, until above the cmc of surfactant when the solution resembles that of the unsubstituted polymer, was confirmed. Additionally, a two-phase region containing a hydrogel phase and a water-like supernatant was found at low SDS concentrations up to 0.2 wt%, a concentration which is akin to the critical association concentration, cac, of SDS in the presence of hmHEC. Above this concentration, SDS molecules bind strongly to form mixed micellar aggregates with the polymer alkyl side-chains, thus strengthening the network junctions, resulting in the observed increase in viscosity and elastic modulus of the solution. The shear behaviour of this polymer-surfactant complex during steady and step stress experiments was examined In great detail. Between SDS concentrations of 0.2 and 0.25 wt%, the shear viscosity of the hmHEC-polymer complex network undergoes shear-induced thickening, followed by a two-stage shear-induced fracture or break-up of the network. The thickening is thought to be due to structural rearrangement, causing the network of flexible polymers to expand, enabling some polymer hydrophobic groups to be converted from intra- to inter-chain associations. At higher applied stress, a partial local break-up of the network occurs, while at even higher stress, above the critical or network yield stress, a complete fracture of the network into small microgel-like units, Is believed to occur. This second network rupture is progressive with time of shear and no steady state in viscosity was observed even after 300 s. The structure which was reformed after the cessation of shear is found to be significantly different from the original state.

Comparison of gastric and other bowel perforations in preterm infants: a review of 20 years' experience in a single institution

  • Lee, Do Kyung;Shim, So Yeon;Cho, Su Jin;Park, Eun Ae;Lee, Sun Wha
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.8
    • /
    • pp.288-293
    • /
    • 2015
  • Purpose: In this study, we aimed to review the clinical presentation of preterm infants with gastrointestinal perforations and compare the clinical features of gastric perforation with other intestinal perforations. Methods: The medical records of preterm neonates with pneumoperitoneum, admitted to the neonatal intensive care unit (NICU) between January 1994 and December 2013, were retrospectively reviewed. Results: Twenty-one preterm infants underwent exploratory laparotomy to investigate the cause of the pneumoperitoneum. The sample consisted of five patients (23.8%) with gastric perforation and 16 patients (76.2%) with intestinal perforation. No statistical differences were found in the birth history and other perinatal factors between the two groups. Underlying necrotizing enterocolitis, bilious vomiting, and paralytic ileus preceding the perforation were statistically more common in the intestinal perforation group. All preterm infants with gastric perforation survived to discharge; however, six preterm infants with intestinal perforation expired during treatment in the NICU. In the gastric perforation group, sudden pneumoperitoneum was the most common finding, and the mean age at diagnosis was $4.4{\pm}1.7days$ of life. The location and size of the perforations varied, and simple closure or partial gastrectomy was performed. Conclusion: Patients with gastric perforation did not have a common clinical finding preceding the perforation diagnosis. Although mortality in previous studies was high, all patients survived to discharge in the present study. When a preterm infant aged less than one week presents with sudden abdominal distension and pneumoperitoneum, gastric perforation should first be excluded. Prompt exploratory laparotomy will increase the survival rates of these infants.

Surgical Correction of Thoracic Aortic Aneurysm Associated with Coronary Artery Disease A Case Report -A Case Report- (관상동맥질환을 동반한 대동맥류 수술치험 1례)

  • 우종수;서정욱
    • Journal of Chest Surgery
    • /
    • v.30 no.7
    • /
    • pp.724-728
    • /
    • 1997
  • We experienced a case of thoracic aortic aneurysm combined with coronary artery disease. A 68-year-old man complained of anginal pain in the left anterior chest and nonspecific pain in the posterior chest. The aneurysm was extending from left subclavian artery to the diaphragm and sign of impending rupture was noted in the chest CT. Coronary angiograms r vealed significant obstruction of left circumflex coronary artery(>95%) and left anterior descending artery(>50%). Exposure was obtained through the left posterolateral thoracotomy incision in the 4th intercostal space and then partial femoro-femoral cardiopulmonary bypass was established. After aortic cross clamping, the aneurysmal sac was opened and repaired with interposition of 26 mm Hemashield graft. Under the beating heart with femoro-femoral cardiopulmonary bypass, aorto-left circumflex coronary bypass with autogenous saphenous vein used as conduit was performed. Postoperatively multiple cerebral infarction ensued due to intraoperative hypovolemic shock and hypoxic brain damage during cardiopulmonary bypass. Currently, the patient's mental status is drowsy and in an improving state.

  • PDF

Offsite Consequence Modeling for Evacuation Distances against Accidental Hydrogen Fluoride (HF) Release Scenarios (Hydrogen Fluoride (HF) 누출 사고 시 피해 범위 예측 및 장외영향평가를 위한 모델링 활용 방법)

  • Kim, Jeonghwan;Jung, Seungho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.582-585
    • /
    • 2016
  • This study intends to provide initial evacuation distances for the public in case of accidental releases of hydrogen fluoride (HF). HF is a very toxic chemical that is widely used in the chemical, electrical, and electronics industries. Consequence modeling programs, such as ALOHA and PHAST, were used to help formulate a contingency plan in case of an HF leak. For the purpose of this study, the release of entire quantity of HF in 10 min is defined as a worst-case scenario and the release from a partial line rupture is used as an alternative case scenario as National Institute of Chemical Safety (NICS) guidelines. Once the discharge rates were calculated based on the scenarios, the ERPG-2 endpoint distances have been obtained for representative daytime and nighttime weather conditions. This paper presents graphs that can be used to enact swift evacuation orders and emergency response plans in the case of accidental releases of HF.

Antibacterial Activity and Inhibition of Resistance in Methicillin-resistant Staphylococcus aureus by Maneung-hwan Ethanol Extract (만응환(萬應丸) 에탄올 추출물의 메티실린 내성 포도상구균에 대한 항균활성 및 내성억제 효과)

  • Na, Yong-su;Kim, Jong-gyu;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • Objectives In this study, we investigated the antimicrobial activity of a 70% ethanol extract of Maneung-hwan (MEH), which is prescribed by practitioners of oriental medicine for use against methicillin-resistant Staphylococcus aureus (MRSA). Methods The antibacterial activity of MEH against MRSA strains was evaluated using the disc diffusion method, broth microdilution method (minimal inhibitory concentration, MIC), checkerboard dilution test, and time-kill test. The mechanism of action of MEH was investigated by bacteriolysis using detergents or ATPase inhibitors Additionally, mRNA and protein expression were investigated by quantitative reverse transcription-polymerase chain reaction and western blot assay, respectively. Results The MIC of MEH was 25~1,600 ㎍/mL against all the tested bacterial strains. We showed that MEH extract exerts strong antibacterial activity. In the checkerboard dilution test, the fractional inhibitory concentration index of MEH in combination with antibiotics indicated synergism or partial synergism against S. aureus. The time-kill study indicated that the growth of the tested bacteria was considerably inhibited after a 24-h treatment with MEH and selected antibiotics. To measure the cell membrane permeability, MEH (3.9 ㎍/mL) was combined with Triton X-100 (TX) at various concentrations N,N-dicyclohexylcarbodimide (DCCD) was also tested as an ATPase inhibitor. TX and DCCD cooperation against S. aureus exhibited synergistic action. Accordingly, the antimicrobial activity of MEH in the context of cell membrane rupture and ATPase inhibition was assessed. Additionally, the expression of genes and proteins associated with resistance was reduced after exposing MRSA to MEH. Conclusions These results suggest that MEH possesses antibacterial activity and acts as a potential natural antibiotic against MRSA.

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF