• Title/Summary/Keyword: partial peptide mapping

Search Result 3, Processing Time 0.022 seconds

Monoclonal antibodies against structural proteins of bovine viral diarrhea virus (소 설사병 바이러스 구조단백에 대한 단크론항체 성상에 대한 연구)

  • Kweon, Chang-hee;Zee, Yuan Chun;Woo, Hee-jong
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.1
    • /
    • pp.83-90
    • /
    • 1992
  • Monoclonal antibodies against structural proteins of bovine viral diarrhea virus(BVDV) were derived by classical hybridoma techniques. These antibodies were characterized by serum neutralization, immunoblotting and immunoprecipitation. The neutralizing monoclonal antibody reacted with the 56kd to 54kd(M.W.) viral protein in western blotting and immunoprecipitation analysis. Although there was no neutralizing activity, another monoclanal antibody reacted with the 45kd protein by immunoprecipitation and with both the 45kd and 36kd proteins in immunoblotting analysis. respectively. Densitometer scanning of purified BVDV and the immunopreipitation of whole virus particles with neutralizing monoclonal antibody revealed the presence of more than twelve viral polypeptides. Although no possible precursor form of protein was identified with the neutralizing monoclonal antibody. the presence of intact virion was detected in the infected cell supernatant immediatelty after pulse labeling, indicating rapid translational processing as well as packaging of the virus. The partial peptide mapping of 45kd and 36kd proteins with Staphylococcus aureus V 8 protease showed that these two proteins are related.

  • PDF

Isolation and Partial Chemical Characterization of the Yolk Proteins from Drosophila sp. (robusta species group) (Drosophila sp.(robusta species group)의 난황 단백질의 분리 및 부분적 화학적 특성)

  • Kim, Se-Jae;Gi
    • The Korean Journal of Zoology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 1992
  • The three yolk polypeptides have been isolated and partially characterized. Their molecular weights of YPI, YP2, and YP3 were 48, 000, 47, 000, and 46, 000, respectivelv, as judged by SDS-polyacrvlamide gel electrophoresis. They have different digestion products upon in situ peptide mapping by limited proteolysis. Two-dimensional gel electrophoresis showed that their isoelectric points were heterogeneous from 5.92 to 6.54. And thew showed three different antigen-antibody reactions when each polvpeptides is reacted with antisera made to a mixture of all of three. These data reported here indicate that the yolk proteins are consisted of distinctive polypeptides in Drosophlla sp. (robusta species group).

  • PDF

Prediction of Rice Embryo Proteins using EST-Databases

  • Woo, Sun-Hee;Cho, Seung-Woo;Kim, Tae-Seon;Chung, Keun-Yook;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Jong, Seung-Keun
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • An attempt was made to link rice embryo proteins to DNA sequences and to understand their functions. One hundred of the 700 spots detected on the embryo 2-DE gels were microsequenced. Of these, 28% of the embryo proteins were matched to DNA sequences with known functions, but 72% of the proteins were unknown in functions as previously reported (Woo et al. 2002). In addition, twenty-four protein spots with 100% of homology and nine with over 80% were matched to ESTs (expressed sequence tags) after expanding the amino acid sequences of the protein spots by Database searches using the available rice EST databases at the NCBI (http://www/ncbi.nlm.nih.gov/) and DDBJ (http://www.ddbj.nig.ac.jp/). The chromosomal location of some proteins were also obtained from the rice genetic map provided by Japanese Rice Genome Research Program (http://rgp.dna.affrc.go.jp). The DNA sequence databases including EST have been reported for rice (Oryza sativa L.) now provides whole or partial gene sequence, and recent advances in protein characterization allow the linking proteins to DNA sequences in the functional analysis. This work shows that proteome analysis could be a useful tool strategy to link sequence information and to functional genomics.