• Title/Summary/Keyword: partial efficiency

Search Result 698, Processing Time 0.029 seconds

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

Design of partial emission type liquid nitrogen pump

  • Lee, Jinwoo;Kwon, Yonghyun;Lee, Changhyeong;Choi, Jungdong;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.64-68
    • /
    • 2016
  • High Temperature Superconductor power cable systems are being developed actively to solve the problem of increasing power demand. With increases in the unit length of the High Temperature Superconductor power cable, it is necessary to develop highly efficient and reliable cryogenic pumps to transport the coolant over long distances. Generally, to obtain a high degree of efficiency, the cryogenic pump requires a high pressure rise with a low flow rate, and a partial emission type pump is appropriate considering its low specific speed, which is different from the conventional centrifugal type, full emission type. This paper describes the design of a partial emission pump to circulate subcooled liquid nitrogen. It consists of an impeller, a circular case and a diffuser. The conventional pump and the partial emission pump have different features in the impeller and the discharge flow passage. The partial emission pump uses an impeller with straight radial blades. The emission of working fluid does not occur continuously from all of the impeller channels, and the diffuser allows the flow only from a part of the impeller channels. As the area of the diffuser increases gradually, it converts the dynamic pressure into static pressure while minimizing the loss of total pressure. We used the known numerical method for the optimum design process and made a CFD analysis to verify the theoretical performance.

A Noel Soft-Switching AC-DC Converter using $L^2SC$

  • Kim C. S.;Lee H. W.;Suh K. Y.;Kim H. D.;Kim K. T.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.271-275
    • /
    • 2001
  • In this paper, proposes a novel AC-DC converter of high power factor and high efficiency by partial resonant method. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and $L^2SC$ (Loss-Less Snubber Condenser). The switching control technique of the converter is simplified for switches to drive in constant duty cycle. Some simulative results and experimental results are included to confirm the validity of the analytical results.

  • PDF

Design of a Turbine System for Liquid Rocket Engines (액체로켓용 터빈시스템 설계)

  • Lee, Dae-Sung;Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.11-18
    • /
    • 2002
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle and potential energy is converted to kinetic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power, etc.) following Liquid Rocket Engine (L.R.E.) system specifications. For simplicity of turbine system, impulse-type rotor blades for open-type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow-rate compared to close-type system. In this study, a partial admission nozzle is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system was introduced. Especially, partial admission nozzle was designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design is presented for a 10 ton thrust level of L.R.E.

Flow Control of a Centralized Cooling Plant for Energy Saving (중앙식 냉방 플랜트의 유량제어를 통한 에너지 절감에 관한 연구)

  • Lee, Jeong Nam;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In a centralized cooling plant, precise mechanical design and control strategy are required for peak and partial cooling load management. Otherwise, it will lead to low efficiency of cooling system and energy loss due to low partial load efficiency. The purpose of this paper is to enhance energy performance of the centralized cooling plant by controlling flow system in an industrial building using measured data and energy performance simulation program. The simulation results show that the proposed flow control can cut down annual electric power consumption by about 17% compared with the conventional cooling system.

Design of a Turbine System for Liquid Rocket Engine (액체로켓용 터빈시스템 설계)

  • Choi, Chang-Ho;Kim, Jin-Han;Yang, Soo-Seok;Lee, Dae-Sung;Woo, Yoo-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.145-152
    • /
    • 2000
  • A turbopump system composed of two pumps and one turbine is considered. The turbine composed of a nozzle and a rotor is used to drive the pumps while gas passes through the nozzle, potential energy is converted to kinematic energy, which forces the rotor blades to spin. In this study, an aerodynamic design of turbine system is investigated using compressible fluid dynamic theories with some pre-determined design requirements (i.e., pressure ratio, rotational speed, required power etc.) obtained from liquid rocket engine (L.R.E.) system design. For simplicity of turbine system, impulse-type rotor blades for open type L.R.E. have been chosen. Usually, the open-type turbine system requires low mass flow rate compared to close-type system. In this study, a partial admission nozzle Is adopted to maximize the efficiency of the open-type turbine system. A design methodology of turbine system has been introduced. Especially, partial admission nozzle has been designed by means of simple empirical correlations between efficiency and configuration of the nozzle. Finally, a turbine system design for a 10 ton thrust level of L.R.E is presented.

  • PDF

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Tae-Un;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.36-43
    • /
    • 2011
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

The Study on Algorithm for Partial shade Compasation of PV (태양광 발전시스템의 부분그늘 보상을 위한 알고리즘에 관한 연구)

  • Koh K. H.;Lee H. W.;Suh K. Y.;Koh H. S.;Moon S. C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • In this paper, compare and analyze existent MPPT algorithms. Existent algorithms have defects which don't generate it in a partial shade or low insolation. Therefore, to supplement it, we design improved IncCond algorithm consisted of a Aux. switch and capacitor with Generation Control circuit which can always obtain maximum generation power at the factor which is reduced generational efficiency by partial shade. Generation Control circuit is method which can always get maximum output power as it regularly controls each voltage of serial connected solar cell. Accordingly, it can improve efficiency and confidence of utility interaction inverter. Construction of system use a low price PIC16F87X. We analyze special character according to system operation through simulation and prove the validity through experiments.

  • PDF

Numerical Analysis on the Effect of Blade Sweep and Lean on the Performance of a Partial Admission Supersonic Turbine (스윕과 린을 적용한 부분흡입형 초음속 터빈의 성능 특성에 관한 수치적 연구)

  • Kwon, Ta-Eun;Jeong, Soo-In;Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.786-792
    • /
    • 2010
  • The present study deals with numerical flow analysis to investigate the effect of sweep and lean on the performance characteristics of a partial admission supersonic turbine. The flow analysis was performed for three different angles. The angles of sweep and lean are $5^{\circ}$, $10^{\circ}$, $15^{\circ}$. The results of the flow analysis showed that the efficiency is improved as the sweep angle is increased. However, a sweep angle of $5^{\circ}$ was less effective in comparison with the baseline model. The total pressure loss was reduced as the lean angle is increased, but the total to static efficiency was decreased.

  • PDF

Research and Development of High Luminous Efficacy Plasma Displays

  • Kosugi, Naoki;Akiyama, Toshiyuki;Kitagawa, Masatoshi;Shinodaq, Tsutae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • Over 5lm/W white luminous efficacy was obtained by 11" color test panel with narrowed discharge electrodes combined with high Xe partial pressure. By using optical spectroscopic methods, it was suggested that the electron heating efficiency is the most significant to improve the plasma efficiency in our experimental conditions.

  • PDF