• Title/Summary/Keyword: partial debonding

Search Result 18, Processing Time 0.028 seconds

Multiple Cracking Model of Fiber Reinforced High Performance Cementitious Composites under Uniaxial Tension

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2009
  • A theoretical model of multiple cracking failure mechanism is proposed herein for fiber reinforced high performance Cementitious composites. By introducing partial debonding energy dissipation on non-first cracking plane and fiber reinforcing parameter, the failure mechanism model of multiple cracking is established based on the equilibrium assumption of total energy dissipation on the first crack plane and non-first cracking plane. Based on the assumption of the first crack to be the final failure crack, energy dissipation terms including complete debonding energy, partial debonding energy, strain energy of steel fiber, frictional energy, and matrix fracture energy have been modified and simplified. By comparing multiple cracking number and energy dissipations with experiment results of the reference's data, it indicates that this model can describe the multiple cracking behavior of fiber reinforced high performance cementitious composites and the influence of the partial debonding term on energy dissipation is significant. The model proposed may lay a foundation for the predictions of the first cracking capacity and post cracking capacity of fiber reinforced high performance cementitious composites and also can be a reference for optimal mixture for construction cost.

Stress analysis of the effect of debonding of cement-femoral stem interface to the bone-cement interface -A three-dimensional Finite Element Analysis- (시멘트-대퇴Stem 경계면 해리가 골-시멘트 경계면에 미치는 응력 분석 -3차원 비선형 Finite Element Analysis-)

  • Kim, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.337-346
    • /
    • 1996
  • Debonding of cement-femoral stem interface has been suggested as a initial focus of loosening mechanism in many previous studies of cemented total hip replacement. The purpose of this study was to investigate the effect of debonding of cement-femoral stem interface to the bone-cement interface by using three-dimensional non-liner finite element analysis. Three cases of partial debonded, full debonded, full bonded cement-bone interface were modelled with partial bonding of distal 70mm from the tip of femoral stem. Each situation was studied under loading stimulating one-leg stanced gait of 68kg patient. The results showed that under partial and full debonded cement-stem interface condition the peak von Mises stress(3.1 MPa) were observed at the cement of bone-cement interface just under the calcar of proximal medial of femur, and sudden high peak stresses(3.5MPa) were developed at the distal tip of femoral stem at the lateral bone-cement interface in all 3 cases of bonding. The stresses were transfered very little to the cement of upper lateral bone-cement interface in partial and full debonded cases. Thus, once partial or full debonded cement-femoral stem interface occured, 3 times higher stress concentration were developed on the cement of proximal medial bone-cement interface than full bonded interface, and these could cause loosening of cemented total hip replacement. Clinically, preservation of more rigid cement-femoral stem interface may be important factor to prevent loosening of femoral stem.

  • PDF

Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro

  • Foek, Dave Lie Sam;Yetkiner, Enver;Ozcan, Mutlu
    • The korean journal of orthodontics
    • /
    • v.43 no.4
    • /
    • pp.186-192
    • /
    • 2013
  • Objective: To analyze the fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Methods: Roots of human mandibular central incisors were covered with silicone, mimicking the periodontal ligament, and embedded in polymethylmethacrylate. The specimens (N = 50), with two teeth each, were randomly divided into five groups (n = 10/group) according to the retainer materials: (1) Interlig (E-glass), (2) everStick Ortho (E-glass), (3) DentaPreg Splint (S2-glass), (4) Ribbond (polyethylene), and (5) Quad Cat wire (stainless steel). After the recommended adhesive procedures, the retainers were bonded to the teeth by using flowable composite resin (Tetric Flow). The teeth were subjected to 10,00,000 cyclic loads (8 Hz, 3 - 100 N, $45^{\circ}$ angle, under $37{\pm}3^{\circ}C$ water) at their incisoproximal contact, and debonding forces were measured with a universal testing machine (1 mm/min crosshead speed). Failure sites were examined under a stereomicroscope (${\times}40$ magnification). Data were analyzed by one-way analysis of variance. Results: All the specimens survived the cyclic loading. Their mean debonding forces were not significantly different (p > 0.05). The DentaPreg Splint group (80%) showed the highest incidence of complete adhesive debonding, followed by the Interlig group (60%). The everStick Ortho group (80%) presented predominantly partial adhesive debonding. The Quad Cat wire group (50%) presented overlying composite detachment. Conclusions: Cyclic loading did not cause debonding. The retainers presented similar debonding forces but different failure types. Braided stainless steel wire retainers presented the most repairable failure type.

A Cohesive Surface Separation Potential

  • Lee, Youngseog;Kim, Kwang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1435-1439
    • /
    • 2002
  • This paper presents a form of the cohesive surface separation potential, which can produce potential curves by varying a single dimensionless parameter. Results show that a partial modification of Xu and Needleman's (1994) cohesive surface separation potential makes it possible to present the other potential corves as a special case as long as the normal separation is concerned. The proposed potential may describe interfacial debonding-crack initiation and growth-character of materials and, through numerical simulation, provide an insight for the effect of different cohesive surface separation potentials on the interfacial debonding.

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

CLINICAL PERSPECTIVES ON 2-UNIT CANTILEVERED RESIN-BONDED FIXED PARTIAL DENTURE (2-unit cantilever 레진접착성 가공의치 (resin-bonded fixed partial denture) 임상의 현재)

  • Yi Yang-Jin;Choi Lee-Ra;Parki Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.81-88
    • /
    • 2003
  • Resin-bonded bridge has been an alternative to conventional bridge, since resin-bonded bridge has many attractive advantages such as minimal tooth preparation, short chair time and low cost over conventional bridge. Unfortunately, however, it was reported that resin-bonded bridge showed high failure rate from debonding of retainer in spite of consecutive advances in preparation and materials. And it was shown that multiple abutments were more likely to fail. The majority of debonding failure was considered due to the mobility of the abutment during function. In this view, recently, modification in resin-bonded bridge design was tried. Single retainer, single pontic. 2-unit cantilevered resin-bonded bridge was applied to clinical performance and was shown as retentive or more retentive than fixed-fixed type resin-bonded bridge. This was consistent with the results of studies in 2-unit cantilevered resin-bonded bridges made with all ceramic, In-ceram. The purpose of this article was to overview principles of design and to analyze clinical results of 2-unit cantilevered resin-bonded bridge in comparison with the reports of fixed-fixed resin-bonded bridge.

Experimental Study of Flexural Behavior of Steel Beam Strengthened with the Fiber Reinforced Polymer Plastic(FRP) Strips (섬유보강플라스틱(FRP) 스트립으로 보강한 철골보의 휨거동에 관한 실험적연구)

  • Choi, Sung Mo;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • This paper presents the experimental results of flexural behavior of steel beam strengthened with fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Four H beams were fabricated strengthened with aramid strips and carbon strips and one control specimen were also fabricated. Among them two specimens were strengthened with partial length. The H-beams had two types of failure mode, depending on the length of the FRP strips:(1) strip debonding in beams with partial length reinforcement and (2) strip rupture in beams with full length reinforcement. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.

THE EFFECT OF SUREACE TREATMENTS ON THE REBONDED RESIN-BONDED RETAINERS

  • Kim Sang-Pil;Kang Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.590-596
    • /
    • 2002
  • The resin : metal interface is at the basis of most bonding failures in resin-bonded prosthesis. Although debonding has been a problem with adhesive fixed partial dentures, various dentists classify them as long-term restorations. The advantages of resin-bonded fixed partial dentures include minimal tooth reduction and the possibility of rebonding. if resin-bonded protheses can be easily rebounded, it is of clinical importance to know if the lutingagents rebond as well the second time as they did originally. Several retentive systems for resin-to-metal bonding have recommended. Treatments such as electrolytic etching and silicone coating, despite the good result of bond strength, have proved to be time-consuming and technique-sensitive. Therefore a simple and more reliable method is desirable. This study evaluated the effect of metal surface treatments on the rebond strength of panavia 21 cement to a nickel-chromium(Ni-Cr) alloy. The samples were received the following surface treatments : Group No.1 (control or served as the control) treatment with sandblasting with 50um aluminum oxide and ultrasonically cleaned for 10minutes in double-deionized water, Group No.2 were no surface treatments. Group No.3 were treated with metal primer. Group No.4 were treated with sandblasting as previously described, and then metal priming. From the analysis of the results, the following conclusions were drawn. 1. Sandblasting and metal priming appears to be an effective method for treatment of metal after accidental debonding. 2. Group without surface treatment had significantly lower bond strengths compared with other groups. 3. The combination of sandblasting and metal priming may not develop superior bonding strengths compared with other techniques that used the Ni-Cr alloys. 4. Combination of cohesive and adhesive failures were the most common type observed. The results support the use of sandblasting as a viable procedure when rebonding accidentally lost adhesive partial denture. We concluded that sandblasting and metal priming of metal surface before bonding could provide the adequate bond strength during rebonding of resin-bonded fixed partial denture.

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

Influence of the amount of tooth surface preparation on the shear bond strength of zirconia cantilever single-retainer resin-bonded fixed partial denture

  • Sillam, Charles-Ellie;Cetik, Sibel;Ha, Thai Hoang;Atash, Ramin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.286-290
    • /
    • 2018
  • PURPOSE. Conventional resin-bonded fixed partial dentures (RBFPDs) are usually made with a two-retainer design. Unlike conventional RBFPDs, cantilever resin-bonded fixed partial dentures (Cantilever RBFPDs) are, for their part, made with a single-retainer design. The aim of this study was to compare the effect of tooth surface preparation on the bond strength of zirconia cantilever single-retainer RBFPDs. The objective is to evaluate the shear bond strength of these single-retainer RBFPDs bonded on 3 different amount of tooth surface preparation. MATERIALS AND METHODS. Thirty extracted bovine incisors were categorized to 3 groups (n=10), with different amounts of tooth surface preparations. Teeth were restored with single-retainer RBFPDs with different retainer surfaces: large retainer of $32mm^2$; medium retainer of $22mm^2$; no retainer and only a proximal connecting box of $12mm^2$. All RBFPDs were made of zirconia and were bonded using an adhesive system without adhesive capacity. Shear forces were applied to these restorations until debonding. RESULTS. Mean shear bond strength values for the groups I, II, and II were $2.39{\pm}0.53MPa$, $3.13{\pm}0.69MPa$, and $5.40{\pm}0.96MPa$, respectively. Statistical analyses were performed using a one-way ANOVA test with Bonferroni post-hoc test, at a significance level of 0.001. Failure modes were observed and showed a 100% adhesive fracture. CONCLUSION. It can be concluded that the preparation of large tooth surface preparation might be irrelevant. For zirconia single-retainer RBFPD, only the preparation of a proximal connecting box seems to be a reliable and minimally invasive approach. The differences are statistically significant.