• Title/Summary/Keyword: partial composite beam

Search Result 92, Processing Time 0.032 seconds

Transverse and longitudinal partial interaction in composite bolted side-plated reinforced-concrete beams

  • Oehlers, D.J.;Nguyen, N.T.;Ahmed, M.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.553-563
    • /
    • 1997
  • A procedure is being developed for bolting plates to the sides of existing reinforced concrete beams to strengthen and stiffen them. Unlike standard composite steel and concrete beams in which there is longitudinal-partial-interaction at the steel/concrete interface (that is slip along the length of the beam), composite bolted side-plated reinforced-concrete beams are unique in that they also exhibit transverse-partial-interaction, that is slip transverse to the length of the beam. In this work, the fundamental mathematical models for transverse-partial-interaction and its interaction with longitudinal-partial-interaction are developed. The fundamental models are then further developed to determine the number of connectors required to resist the transverse forces and to limit the degree of transverse-partial-interaction in bolted side-plated reinforced concrete beams.

Detecting width-wise partial delamination in the composite beam using generalized fractal dimension

  • Kumar, S. Keshava;Ganguli, Ranjan;Harursampath, Dineshkumar
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.91-103
    • /
    • 2017
  • Generalized fractal dimension is used to detect the presence of partial delamination in a composite laminated beam. The effect of boundary conditions and location of delamination on the fractal dimension curve is studied. Appropriability of higher mode shape data for detection of delamination in the beam is evaluated. It is shown that fractal dimension measure can be used to detect the presence of partial delamination in composite beams. It is found that the torsional mode shape is well suited for delamination detection in beams. First natural frequency of delaminated beam is found to be higher than the healthy beam for certain small and partial width delaminations and some boundary conditions. An explanation towards this counter intuitive phenomenon is provided.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Thermal nonlinear dynamic and stability of carbon nanotube-reinforced composite beams

  • M. Alimoradzadeh;S.D. Akbas
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.637-647
    • /
    • 2023
  • Nonlinear free vibration and stability responses of a carbon nanotube reinforced composite beam under temperature rising are investigated in this paper. The material of the beam is considered as a polymeric matrix by reinforced the single-walled carbon nanotubes according to different distributions with temperature-dependent physical properties. With using the Hamilton's principle, the governing nonlinear partial differential equation is derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The critical buckling temperatures, the nonlinear natural frequencies and the nonlinear free response of the system is obtained. The effect of different patterns of reinforcement on the critical buckling temperature, nonlinear natural frequency, nonlinear free response and phase plane trajectory of the carbon nanotube reinforced composite beam investigated with temperature-dependent physical property.

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Exact and approximate solutions for free vibrations of continuous partial-interaction composite beams

  • Sun, Kai Q.;Zhang, Nan;Zhu, Qun X.;Liu, Xiao
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.531-543
    • /
    • 2022
  • An exact dynamic analytical method for free vibrations of continuous partial-interaction composite beams is proposed based on the Timoshenko beam theory. The main advantage of this method is that the independent shear deformations and rotary inertia of sub-beams are considered, which is more in line with the reality. Therefore, the accuracy of eigenfrequencies obtained by this method is significantly improved, especially for higher order modes, compared to the existing methods where the rotary angles of both sub-beams are assumed to be equal irrespective of the differences in the shear stiffness of each sub-beam. Furthermore, the solutions obtained by the proposed method are exact owing to no introduction of approximated displacement and force fields in the derivation. In addition, an exact analytical solution for the case of simply supported is obtained. Based on this, an approximate expression for the fundamental frequency of continuous partial-interaction composite beams is also proposed, which is useful for practical engineering applications. Finally, the practicability and effectiveness of the proposed method and the approximate expression are explored using numerical and experimental examples; The influence factors including the interfacial interaction, shear modulus ratio, span-to-depth ratio, and side-to-main span length ratio on the eigenfrequencies are presented and discussed in detail.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Tubular composite beam-columns of annular cross-sections and their design practice

  • Kvedaras, A.K.;Kudzys, A.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.109-128
    • /
    • 2010
  • The expediency of using tubular composite steel and concrete columns of annular cross-sections in construction is discussed. The new type space framework with tubular composite columns of multi-storey buildings and its rigid beam-column joints are demonstrated. The features of interaction between the circular steel tube and spun concrete stress-strain states during the concentrical and eccentrical loading of tubular composite members are considered. The modeling of the bearing capacity of beam-columns of composite annular cross-sections is based on the concepts of bending with a concentrical force and compression with a bending moment. The comparison of modeling results for the composite cross-sections of beam-columns is analysed. The expediency of using these concepts for the limit state verification of beam-columns in the methods of the partial safety factors design (PSFD) legitimated in Europe and the load and resistance factors design (LRFD) used in other countries is presented and illustrated by a numerical example.

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.