• 제목/요약/키워드: partial collapse

검색결과 80건 처리시간 0.023초

COLLAPSE PRESSURE ESTIMATES AND THE APPLICATION OF A PARTIAL SAFETY FACTOR TO CYLINDERS SUBJECTED TO EXTERNAL PRESSURE

  • Yoo, Yeon-Sik;Huh, Nam-Su;Choi, Suhn;Kim, Tae-Wan;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.450-459
    • /
    • 2010
  • The present paper investigates the collapse pressure of cylinders with intermediate thickness subjected to external pressure based on detailed elastic-plastic finite element (FE) analyses. The effect of the initial ovality of the tube on the collapse pressure was explicitly considered in the FE analyses. Based on the present FE results, the analytical yield locus, considering the interaction between the plastic collapse and local instability due to initial ovality, was also proposed. The collapse pressure values based on the proposed yield locus agree well with the present FE results; thus, the validity of the proposed yield locus for the thickness range of interest was verified. Moreover, the partial safety factor concept based on the structural reliability theory was also applied to the proposed collapse pressure estimation model, and, thus, the priority of importance of respective parameter constituting for the collapse of cylinders under external pressure was estimated in this study. From the application of the partial safety factor concept, the yield strength was concluded to be the most sensitive, and the initial ovality of tube was not so effective in the proposed collapse pressure estimation model. The present deterministic and probabilistic results are expected to be utilized in the design and maintenance of cylinders subjected to external pressure with initial ovality, such as the once-through type steam generator.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

응용요소법을 이용한 철근콘크리트 구조물의 연쇄붕괴 저항성능 평가 (Evaluation of Progressive Collapse Resisting Capacity of RC structure using the Applied Element Method)

  • 박훈;석철기;조상호
    • 화약ㆍ발파
    • /
    • 제31권1호
    • /
    • pp.41-48
    • /
    • 2013
  • 일반적으로 연쇄붕괴는 비정상하중에 의해 구조부재의 국부손상이 구조물의 국부파괴 또는 전체파괴가 발생되는 것을 나타낸다. 연쇄붕괴와는 달리 발파해체는 구조부재의 전체 또는 일부를 제거함으로써 구조물의 전체파괴를 유도하는 공법이다. 이러한 발파해체는 구조부재의 국부파괴를 발파에 의해 적절한 시차로 제어함으로써 구조물의 연쇄붕괴를 유도할 수 있으며, 붕괴거동을 제어할 수 있다. 본 연구에서는 연쇄붕괴 과정을 철근 콘크리트 구조물 발파해체 설계에 적용하기 위해 응용요소법을 이용하여 비선형 동적해석을 수행하였다. 해석 모델의 층수, 기둥 높이, 스팬 길이에 따른 연쇄붕괴 발생 여부를 검토하고, 연쇄붕괴 저항성능을 평가하였다.

거골 경부 골절 이후 발생한 부분적인 골괴사의 3차원 부피 분석 (Three-Dimensional Volume Analysis of Partial Avascular Necrosis after Talar Neck Fracture)

  • 나웅채;이준영;박상하;박형석
    • 대한족부족관절학회지
    • /
    • 제19권4호
    • /
    • pp.161-164
    • /
    • 2015
  • Purpose: The purpose of this study is to define the geographic patterns of partial avascular necrosis (AVN) of the talar body and to determine whether there were any predictors of both the location and occurrence of partial AVN. Materials and Methods: Nineteen patients with fracture of the talar neck treated by open reduction and internal fixation and followed up for more than 1 year were analyzed. The radiographs were examined 6 to 8 weeks after the operation for Hawkins sign and if it was not observed, magnetic resonance scans were performed. The three-dimensional analysis was performed using Mimics 17.0 (Materialise). The incidence of collapse and time to operative intervention was recorded. Results: Partial AVN of the talar body was observed in six out of 19 patients. The avascular segment of the talar body was located predominantly in the anterolateral portion. The average volume of the avascular segment was $289mm^3$, and it occupied 1% of total volume of the talus, and 10% of the talar dome. Collapse occurred in one patient in the area of the avascular process. There were no observable trends with regard to Hawkins classification, incidence of collapse, or time to operative intervention to the location of the avascular segment. Conclusion: Partial AVN can occur after fracture of the talar neck. The predominant location of the avascular segment was the anterolateral portion of the talar body. This information may be helpful to understanding the process of avascular necrosis of the talar body.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

Effect of connection stiffness on the earthquake-induced progressive collapse

  • Ali, Seyedkazemi;Mohammad Motamedi, Hour
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.503-515
    • /
    • 2022
  • Global or partial damage to a structure due to the failure of gravity or lateral load-bearing elements is called progressive collapse. In the present study, the alternate load path (ALP) method introduced by GSA and UFC 4-023-03 guidelines is used to evaluate the progressive collapse in special steel moment-resisting frame (SMRF) buildings. It was assumed that the progressive collapse is due to the earthquake force and its effects after the removal of the elements still remain on the structures. Therefore, nonlinear dynamic time history analysis employing 7 earthquake records is used to investigate this phenomenon. Internal and external column removal scenarios are investigated and the stiffness of the connections is changed from semi-rigid to rigid. The results of the analysis performed in the OpenSees program show that the loss of the bearing capacity of an exterior column due to a seismic event and the occurrence of progressive collapse can increase the inter-story drift of the structure with semi-rigid connections by more than 50% and make the structure unable to satisfy the life safety performance level. Furthermore, connection stiffness severely affects the redistribution of forces and moments in the adjacent elements of the removed column.

비굴착 전체보수용 라이너의 두께 설계식 및 말단부 처리에 따른 라이너의 안정성 검토 연구 (Evaluation of Design Equation and Stability for Trenchless Pipe Liner System with Boundary Treatment)

  • 박종섭;송호면
    • 한국산학기술학회논문지
    • /
    • 제8권5호
    • /
    • pp.1166-1172
    • /
    • 2007
  • 비굴착 보수 공법에 의한 파이프 보강은 전체 파손관과 부분 파손관으로 구분되어 정의된다. 부분 파손된 관내에 사용된 라이너 관은 수압만이 작용되며, 상재 하중 및 토압, 지하수에 의한 압력에 대해서 기존의 관이 모두 저항하게 된다. 본 연구는 기존에 사용되고 있는 보강튜브경화공법 설계식에 대한 라이너 보수관 적용성을 평가하여 적용가능함을 확인하였다. 또한, 개발된 말단부 처리 공법이 적용된 라이너의 안전성을 유한요소해석을 통해 평가하였다.

  • PDF

ELS를 이용한 고층 RC 빌딩의 붕괴해석 및 발파해체해석 기법의 국부손상-연쇄붕괴 전이과정 해석에 응용 (Collapse Simulations of High-Rise RC Building Using ELS Software and Application of Explosive Demolition Methods to Transition Process Analysis from Local Damage to Progressive Collapse)

  • 김현수;박훈;김승곤;이연규;조상호
    • 화약ㆍ발파
    • /
    • 제29권2호
    • /
    • pp.1-12
    • /
    • 2011
  • 외부폭발, 화재, 충돌, 지진, 태풍과 같은 비정상 하중에 의한 고층빌딩의 연쇄붕괴(progressive collapse) 해석에 관련된 많은 연구가 진행되고 있다. 특히 그러나 실규모의 고층건물을 대상으로 한 손상 및 붕괴에 실험은 현실상 불가능한 실정이다. 본 연구에서는 구조물 발파해체분야에서 적용되는 ELS 소프트웨어를 이용하여 외부폭발에 의한 고층 RC 구조물의 국부손상 및 연쇄붕괴시뮬레이션을 수행하였다. 현관으로부터 1m, 2m, 5m, 10m, 15m 이격되어 폭약 1,500kg이 폭발한 것을 가정하여, 이격거리에 따른 국부손상과 이에 따른 연쇄붕괴현상을 파악하였다. 특히 기폭시나리오에 따라 구조물 지지부재의 일부를 제거하여 구조물의 붕괴를 유도하는 발파해체기법을 국부손상-연쇄붕괴 전이과정 연구에 적용하였다.

구강 내 장치를 활용한 코골이 및 수면무호흡증의 치료 (Treatment of Snoring and Obstructive Sleep Apnea with Oral Appliance)

  • 김지락
    • 대한치과의사협회지
    • /
    • 제57권5호
    • /
    • pp.288-295
    • /
    • 2019
  • Sleep-disordered breathing (SDB) is defined as a disturbed breathing during sleep caused by repetitive upper airway collapse. Complete collapse causes a cessation of breathing, known as obstructive sleep apnea (OSA) and snoring can arise from partial collapse. Undiagnosed and untreated OSA means recurrent intermittent hypoxemia and leads to a variety of cardiovascular disorders, disturbed neurocognition, and excessive daytime sleepiness. Various behavioral modalities have been suggested for treating snoring and sleep apnea including changing the sleep position, avoiding alcohol, and weight loss. Until now continuous positive airway pressure (CPAP) therapy is one of effective treatment for patients with OSA, but its discomfort causes less tolerance and compliance. Therefore, clinical effectiveness and convenience for oral appliance have emerged and the role of dentists has become more important in the management of OSA.

  • PDF

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.