• Title/Summary/Keyword: partial buckling

Search Result 58, Processing Time 0.029 seconds

Characteristic Behavior of In-plane Buckling of Circular Arch Ribs Subjected to Partial Distributed Loading (부분 등분포 하중을 받는 원형아치 리브의 면내 좌굴 거동특성)

  • Kim, Sung-Hoon;Moon, Ji-Ho;Yoon, Ki-Yong;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.57-65
    • /
    • 2005
  • When arch ribs are subjected unsymmetrical load, buckling strength Is lower than strength of arch ribs subjected symmetrical load. However, A few study about the buckling strength of arch ribs subjected unsymmetrical load is performed compare with study about arch ribs subjected symmetrical load. Several researchers(Deutch : 1940, Chang : 1973, Harrison : 1982) studied about arch ribs subjected unsymmetrical load and they found that unsymmetrical loading reduces the critical buckling load. But, their results are limited parabolic arch ribs. This paper focuses on circular arch ribs subjected to unsymmetrical loading. The result shows that the ratio of live and dead load length to cause smallest critical buckling load of arch ribs is $0.6{\sim}0.7$ under geometric nonlinear condition and $0.5{\sim}0.6$ under both material and geometrical nonlinear conditions.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

Experimental study on partially-reinforced steel RHS compression members

  • Pinarbasi, Seval
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.385-400
    • /
    • 2017
  • This paper presents an experimental study on the behavior of axially-loaded steel RHS (rectangular hollow section) compression members that are partially reinforced along their lengths with welded steel plates. 28 slender column tests were carried out to investigate the effects of the slenderness ratio of the unreinforced member and the ratio of the reinforced length of the member to its entire length. In addition to the slender column tests, 14 stub-column tests were conducted to determine the basic mechanical properties of the test specimens under uniform compression. Test results show that both the compressive strength and stiffness of an RHS member can be increased significantly compared to its unreinforced counterpart even when only the central quarter of the member is reinforced. Based on the limited test data, it can be concluded that partial reinforcement is, in general, more effective in members with larger slenderness ratios. A simple design expression is also proposed to predict the compressive strength of RHS columns partially reinforced along their length with welded steel plates by modifying the provisions of AISC 360-10 to account for the partial reinforcement.

A Study on Damage Process Analysis for Steel Pier Subjected to Seismic Excitation (강한 지진 하중하에서 강재 교각의 손상 거동 연구)

  • Park, Yeon Soo;Park, Keun Koo;Park, Sun Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.251-258
    • /
    • 2000
  • Based on the numerical investigations using steel bridge pier subjected to strong seismic excitations a new approach to seismic damage assessment for steel structures and their members has been proposed in conjunction with the suggested definition of failure state. The relevant failure form of the steel pier is evaluated. It is revealed that when a seismic load has a short period, the failure of global buckling beyond the allowable displacement is more dominant than that by that of the local buckling caused by the accumulation of plastic strain. When a seismic load is not beyond this certain part, but repeats within the range of where a plastic deformation occurs, the plastic strain is accumulated on the partial element of bottom edge of steel pier and the failure occurs by the local buckling from the accumulated plastic local strain.

  • PDF

An Investigation into differences between codes for the Moment Strength of Deck Plates (데크플레이트의 휨 강도에 관한 기준 비교 연구)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • This research aimed to experimentally and theoretically investigate the moment strength of deck plates. A moment experiment was carried out using a full-scale 14 specimen. To prevent local buckling, the point load was applied at 1/4 points. After the experiment, theoretical analysis was conducted and the differences between various codes were identified. The experimental results were compared with AISI (the American Iron and Steel Institute), EC (Euro Code) 3, and KS (Korea Standard) codes. Analysis results are summarized as follows: (1) the failure mode was influenced by local buckling at the midpoint of the beam and/or at the intermediate loading point: (2) if yielding first occurred at the tension side, the moment strength would increase as the plastic reservation of the tension zone acted: (3) the experimental results were closest to the EC3 codes in which the partial plastic reservation was considered; (4) statistical evaluation based on the EC3 Annex Z showed that the partial resistance safety coefficient calculated applying to the EC3 formula, $^{\circ}{_M}$, was placed within 1.1 which was the target value of EC3 code; and (5) the analytical power of AISI and KS codeswere expected to improve into the level of EC3 codes if the concept of plastic reservation of the tension side would be introduced to them.

Pendulum Impact Tests for 16by16 Through Welded Spacer Grids with Optimized H type Springs (선용접방법으로 제작된 $16{\times}16$ 최적화 H형 스프링 지지격자에 대한 진자식충격시험)

  • Kim, J.Y.;Yoon, K.H.;Song, K.N.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1803-1806
    • /
    • 2007
  • The General roles of a spacer grid(SG) are providing a lateral and vertical support for fuel rods, promoting a mixing of coolant and keeping guide tubes straight so as not to impede a control rod insertion under any normal or accidental conditions. To evaluate the impact characteristics of a SG such as impact velocity, critical buckling strength and duration time, a few types of impact tests for SGs have been conducted. In a previous study, a new welding method, a through-welding method, was proposed to increase critical buckling strength of a SG without any design change or material change and was verified by impact tests with $7{\times}7$ partial SG specimens.In this paper, the effect of through-welding method in case of a $16{\times}16$ full-size SG is investigated by pendulum impact tests with $16{\times}16$ SG specimens. And the increase of critical buckling strength for full-size SGs is measured by comparison with impact results of spot-welded and through-welded SGs.

  • PDF

Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • Present article deals with the static stability analysis of compositionally graded nanocomposite beams reinforced with graphene oxide powder (GOP) is undertaken once the beam is subjected to an induced force caused by nonuniform magnetic field. The homogenized material properties of the constituent material are approximated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a higher-order refined beam model is incorporated with the dynamic form of the virtual work's principle to derive the partial differential motion equations of the problem. The governing equations are solved via Galerkin's method. The introduced mathematical model is numerically validated presenting a comparison between the results of present work with responses obtained from previous articles. New results for the buckling load of GOP reinforced nanocomposites are presented regarding for different values of magnetic field intensity. Besides, other investigations are performed to show the impacts of other variants, such as slenderness ratio, boundary condition, distribution type and so on, on the critical stability limit of beams made from nanocomposites.

Simulation and modeling for stability analysis of functionally graded non-uniform pipes with porosity-dependent properties

  • Peng Zhang;Jun Song;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • The present paper examines the stability analysis of the buckling differentiae of the small-scale, non-uniform porosity-dependent functionally graded (PD-FG) tube. The high-order beam theory and nonlocal strain gradient theory are operated for the mathematical modeling of nanotubes based on the Hamilton principle. In this paper, the external radius function is non-uniform. In contrast, the internal radius is uniform, and the cross-section changes along the tube length due to these radius functions based on the four types of useful mathematical functions. The PD-FG material distributions are varied in the radial direction and made with ceramics and metals. The governing partial differential equations (PDEs) and associated boundary conditions are solved via a numerical method for different boundary conditions. The received outcomes concerning different presented parameters are valuable to the design and production of small-scale devices and intelligent structures.

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).