• Title/Summary/Keyword: partial (or gradient) reduction

Search Result 3, Processing Time 0.017 seconds

Some articulatory reflexes observed in intervocalic consonantal sequences: Evidence from Korean place assimilation

  • Son, Minjung
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • This paper examines kinematic characteristics of /pk/ clusters, as compared to /kk/ and /pp/ with varying vowel contexts and speech rate. The results of EMMA data from eight Seoul-Korean speakers indicate as follows. Firstly, comparing /pk/ to /pp/ sequences, lips closing movement was faster and spatially greater in the /a/-to-/a/ context while temporally longer in the /i/-to-/i/ context. It was smaller in spatial displacement and shorter in temporal duration in /pk/ sequences. Peak velocity did not vary. Secondly, comparing /pk/ with /pp/ and /kk/ controls, lip aperture was less constricted in the /a/-to-/a/ context than /i/-to-/i/, but the maximum contact between the upper and lower lips was invariant across different vocalic contexts within /pk/ sequences (/apka/=/ipki/). Categorical reduction of C1 in /pk/ sequences fell in with the low-vowel and fast-rate conditions with across-/within-speaker variability. Gradient reduction of C1 was observed in all C1C2 types, being more frequent in fast rate. Lastly, the jaw articulator was a stable indicator of rate effects. The implication of the current study is that gestural reduction occurs with categorical reduction and general spatiotemporal weakening in the assimilating contexts, while quantitative properties of gestures may be a reason for gradient reduction, not necessarily confined to place assimilation.

A New PAPR Reduction Method in the OFDM System Using GD and Radix-2 Dif IFFT (OFDM 시스템에서의 GD방식과 Radix-2 DIF IFFT를 이용한 효과적인 PAPR 감소 방식)

  • Lee, Sun-Ho;Lee, Hae-Kie;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.70-73
    • /
    • 2007
  • Many methods have been developed to overcome the PAPR(peak-to-average power ratio) problem. Selective mapping(SLM) partial transmit sequence(PTS), subblock phase weighting(SPW) and gradient descent(GD) are used widely to reduce the PAPR. In this paper, we present a effective PAPR reduction method, decrease the calculation through Radix-2 DIF IFFT procedure and GD method. and can transmit selecting data sequence that satisfy threshold value as one part of proposed method, in case satisfy fixed threshold value, or transmit selecting data sequence with the lower papr operating remained part for performance improvement.

  • PDF

Comparison of Single-Breath and Intra-Breath Method in Measuring Diffusing Capacity for Carbon Monoxide of the Lung (일산화탄소 폐확산능검사에서 단회호흡법과 호흡내검사법의 비교)

  • Lee, Jae-Ho;Chung, Hee-Soon;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.555-568
    • /
    • 1995
  • Background: It is most physiologic to measure the diffusing capacity of the lung by using oxygen, but it is so difficult to measure partial pressure of oxygen in the capillary blood of the lung that in clinical practice it is measured by using carbon monoxide, and single-breath diffusing capacity method is used most widely. However, since the process of withholding the breath for 10 seconds after inspiration to the total lung capacity is very hard to practice for patients who suffer from cough, dyspnea, etc, the intra-breath lung diffusing capacity method which requires a single exhalation of low-flow rate without such process was devised. In this study, we want to know whether or not there is any significant difference in the diffusing capacity of the lung measured by the single-breath and intra-breath methods, and if any, which factors have any influence. Methods: We chose randomly 73 persons without regarding specific disease, and after conducting 3 times the flow-volume curve test, we selected forced vital capacity(FVC), percent of predicted forced vital capacity, forced expiratory volume within 1 second($FEV_1$), percent of forced expiratory volume within 1 second, the ratio of forced expiratory volume within 1 second against forced vital capacity($FEV_1$/FVC) in test which the sum of FVC and $FEV_1$ is biggest. We measured the diffusing capacity of the lung 3 times in each of the single-breath and intra-breath methods at intervals of 5 minutes, and we evaluated which factors have any influence on the difference of the diffusing capacity of the lung between two methods[the mean values(ml/min/mmHg) of difference between two diffusing capacity measured by two methods] by means of the linear regression method, and obtained the following results: Results: 1) Intra-test reproducibility in the single-breath and intra-breath methods was excellent. 2) There was in general a good correlation between the diffusing capacity of the lung measured by a single-breath method and that measured by the intra-breath method, but there was a significant difference between values measured by both methods($1.01{\pm}0.35ml/min/mmHg$, p<0.01) 3) The difference between the diffusing capacity of the lung measured by both methods was not correlated to FVC, but was correlated to $FEV_1$, percent of $FEV_1$, $FEV_1$/FVC and the gradient of methane concentration which is an indicator of distribution of ventilation, and it was found as a result of the multiple regression test, that the effect of $FEV_1$/FVC was most strong(r=-0.4725, p<0.01) 4) In a graphic view of the difference of diffusing capacity measured by single-breath and intra-breath method and $FEV_1$/FVC, it was found that the former was divided into two groups in section where $FEV_1$/FVC is 50~60%, and that there was no significant difference between two methods in the section where $FEV_1$/FVC is equal or more than 60% ($0.05{\pm}0.24ml/min/mmHg$, p>0.1), but there was significant difference in the section, less than 60%($-4.5{\pm}0.34ml/min/mmHg$, p<0.01). 5. The diffusing capacity of the lung measured by the single-breath and intra-breath method was the same in value($24.3{\pm}0.68ml/min/mmHg$) within the normal range(2%/L) of the methane gas gradient, and there was no difference depending on the measuring method, but if the methane concentration gradients exceed 2%/L, the diffusing capacity of the lung measured by single-breath method became $15.0{\pm}0.44ml/min/mmHg$, and that measured by intra-breath method, $11.9{\pm}0.51ml/min/mmHg$, and there was a significant difference between them(p<0.01). Conclusion: Therefore, in case where $FEV_1$/FVC was less than 60%, the diffusing capacity of the lung measured by intra-breath method represented significantly lower value than that by single-breath method, and it was presumed to be caused largely by a defect of ventilation-distribution, but the possibility could not be excluded that the diffusing capacity of the lung might be overestimated in the single-breath method, or the actual reduction of the diffusing capacity of the lung appeared more sensitively in the intra-breath method.

  • PDF