• Title/Summary/Keyword: part of joint

Search Result 955, Processing Time 0.026 seconds

Development of CV Joint Outer Race Ball Groove Measurement System (등속조인트 Ball Groove 측정시스템 개발에 관한 연구)

  • Park K. S.;Kim B. J.;Jang J. H.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.160-163
    • /
    • 2005
  • The cute. race of CV(constant velocity) Joint is an important load-supporting automotive part, which transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. The forged CV Joint investigated in this study has six inner ball grooves requiring high operational accuracy. Therefore, the precise measurement of forged CV Joint is very important to guarantee the sound operation without noise and abnormal wear. In this study, unique in-situ measuring system designed specifically to measure the dimensional accuracy of six inner ball grooves of CV joint has been developed and implemented in shop environments. Newly developed system shows high measurement accuracy with simple operational sequence.

  • PDF

Controller Design for Flexible Joint of Industrial Robots: Part 2 - Vibration Suppression Control and Gain-Scheduling (산업용 로봇의 유연관절 제어기 설계: Part 2 - 진동억제 제어 및 게인스케듈링)

  • Park Jong-Hyeon;Lee Sang-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.371-379
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents a vibration control solution for industrial robots which have flexible joints. The joint flexibility is modeled as a two-mass system. And we analyze the vibration problem of a classical P-PI controller when it used for the flexible joints of industrial robots. Then a state feedback controller is designed for vibration suppression of the two-mass system. Finally, a gain-scheduling method is designed for maintaining control performance in spite of the time-varying nature of each joint's load side inertia. Simulation and experimental results show effective vibration suppression and uniform properties in overshoot in spite of the variation of load. The result of this study can be applied to the appropriate gain manipulation of many other mechatronic devices which have the two-mass system with varying load side inertia.

Fatigue Characteristics on Welded Joint of Gear Box-Shank in Vibro Ripper for Rock Crash (암반 파쇄용 진동리퍼 기어박스-생크 용접부의 피로특성)

  • Oh, K.K.;Kim, Jaehoon;Kim, Y.W.;Park, J.Y.;Yang, G.S.;Park, J.W.;Kim, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.28-33
    • /
    • 2014
  • Vibro ripper worked by high frequency vibration is developed to do rock fragmentation and work of ripper is the different concept with other existing breakers. The gear box-shank welded joint of vibro ripper is very important part to deliver vibromotive force to tooth, so this part should endure high frequency vibration environments. The purposes of this study are to choose the optimal welding conditions for fatigue strength. The conditions were made using three kind of shank materials and two kind of filler metals. Shank materials are Hadox-hituf, Posten80 and AR400, and filler metals are CSF-71T and CSF-81T. The fatigue test was conducted each condition. Fracture surface was observed to estimate fracture characteristics of welded joint using SEM.

The Effects of Various Geometric Parameters on the Skirt Joint Design of Composite Pressure Tanks (복합재 압력탱크의 스커트 조인트 설계를 위한 인자 연구)

  • 김철웅;홍창선;김천곤;박재성
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.13-16
    • /
    • 2002
  • In this research, the design methods of the rocket joint parts were suggested. In the first section, nonlinear finite element analyses for joint parts of a composite pressure tank were performed. In the analyses, the detailed finite element modeling was performed and complex boundary conditions(contact problem, clamping force) were considered. Secondly, several guidelines for the design of joint parts were suggested. The parametric study for geometric design variables was peformed. Finally, the parametric study result was categorized for the multi-Joint part design of the axi-symmetric composite structure.

  • PDF

Physical Therapeutic Procedures for Applying Joint Mobilization (관절 모빌라이제이숀 적용기법에 대한 물리치료적 소고)

  • Park, Ji-Whan
    • Journal of Korean Physical Therapy Science
    • /
    • v.1 no.1
    • /
    • pp.195-202
    • /
    • 1994
  • The following are suggested joint distraction and gliding techniques for use by entry level therapists and those attempting to gain a foundation in joint mobilization. A variety of adaptations can be made from these techniques. The distraction and glide techniques should be applied with respect to the dosage, frequency, progression, precautions, and procedures as described in this section. Basic concepts of joint mobilization were presented, including definitions of terminology and the two grading systems. Joint mobilization techniques are one part of a total treatment for decreased function. Therapy should also include appropriate range of motion, strengthening, and functional techniques.

  • PDF

Computational Modeling of Mount Joint Part of Machine Tools (공작기계 마운트 결합부의 전산 모델링)

  • Ha, Tae-Ho;Lee, Jae-Hak;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1056-1061
    • /
    • 2012
  • FEM analysis is essential to shorten the development time and reduce the cost for developing high-performance machine tools. Mount joint parts play important role to ensure static and dynamic stability of machine tools. This paper suggests a computational modeling of mount joint part of machine tools. MATRIX27 element of ANSYS is adopted to model mount joint parts. MATRIX27 allows the definition of stiffness and damping matrices in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node. Stiffness and damping values of commercial mount products are measured to build a database for FEM analysis. Jack mounts with rubber pad are exemplified in this paper. The database extracted from the experiments is also used to estimate of stiffness and damping of untested mounts. FEM analysis of machine tools system with the suggested mount computational model is performed. Static and dynamic results prove the feasibility of the suggested mount model.

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

A Study on Stress Concentration Factor at Fillet Welded Joint (필렛용접이음부의 응력집중계수에 관한 연구)

  • S.W. Kang;W.I. Ha;J.S. Shin;J.S. Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.1-7
    • /
    • 1996
  • The stress concentration factor gives the significant effect the fatigue strength of welded joints. The model used herein is the type of the load carrying fillet welded cruciform joint with full or partial penetration. In order to obtain the stress concentration factor at the weld toe of fillet joint, the reasonable element size of the toe part is investigated and the stress analysis for the series models by FEM under tensile load is performed. On the basis of the calculation results, the estimated formulae for the stress concentration factor(Kt) at weld toe part of the fillet welded joint, which the effect of toe radius, flank angle and other parameters are taken into account, is derived.

  • PDF

A Study on the Flash Over Delay Method for a Previously Constructed Building with Sandwich Panel Structure (샌드위치패널구조 기축건축물의 플래시오버 지연 공법 연구)

  • Kim, Do-Hyun;Cho, Nam-wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.71-80
    • /
    • 2017
  • The purpose of this study is to applied reinforcement method at the joint part of the sandwich panel. Becasue the joint part of the sandwich panel has a disadvantage that flame spreads fast inside steel plates in the event of fire, leading to a big fire rapidly. In this study, the combustion performance was measured through KS F ISO 13784-1 "Reaction-to-fire tests for sandwich panel building systems" according to the application of reinforcement method to prevent flame from being brought into the internal joint of the sandwich panel. For the reinforcement inside the panel, the tape produced using expanded graphite-based heat-expandable glass fiber was attached. As a result, it was confirmed that the prevention of flame from being brought into the internal joint could delay the flash over time and the collapse of the test specimen.

A Study on the Thermal Fatigue of Solder Joint by Package Types (패키지 유형에 따른 솔더접합부의 열피로에 관한 연구)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • Solder joint is the weakest part which connects in mechanically and electronically between package body and PCB(Printed Circuit Board). Recently, the reliability of solder joint become the most critical issue in surface mounted technology. The solder joint interconnection between plastic package and PCB is susceptible to shear stress during thermal storage due to the mismatch in coefficient of thermal expansion between plastic package and PCB. A general computational approach to determine the effect of solder joint shape on the fatigue life presented. The thermal fatigue life was estimated from the engelmaier equation which was obtained from the temperature cycling loading($-65^{\circ}C$ to $150^{\circ}C$). As result of the simulation, TSOP structure has the shortest thermal fatigue life and the same structure Copper lead has 2.5 times as much fatigue life as Alloy 42 lead. In BGA structure, fatigue life time extended 80 times when underfill material exists.

  • PDF