• Title/Summary/Keyword: parasequence

Search Result 3, Processing Time 0.022 seconds

Seismic Stratigraphy of Upper Devonian Carbonates Area in Northern Alberta, Canada (캐나다 북부 알버타주 데본기 후기 탄산염암 지역의 탄성파 층서)

  • Lee, Min-Woo;Oh, Jin-Yong;Yun, Hye-Su
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.503-511
    • /
    • 2011
  • The Upper Devonian Grosmont Formation in northern Alberta, Canada, underlies the erosion unconformity that formed between the Cretaceous and Upper Devonian. The formation is divided into four units on the basis of intercalated shales and showing a typical shelf environment of shallowing-upward. It was possible to separate four units(LG~UG3), considering the seismic interpretation attributes of polarity, continuity, frequency/spacing and amplitude and showing the reflection characteristics of the medium-high amplitude, medium-low frequency, good continuity, and subparallel reflection events. The formation can be interpreted as shelf or platform, based on in-situ core data. However, it is difficult, only with reflection attributes and features, to recognize the boundaries and sedimentary environment of parasequence. Therefore, we try to interprete by parasequence set in this study. The parasequence set was formed by erosion unconformity with systems tracts. The erosion unconformity can be recognized by facies data and karst, erosional surface. Grosmont carbonate deposits ranging from platform and shelf to shelf slope are; by wedge-shaped strata of characterized by complex sigmoid-oblique progradational configurations, reflecting a depositional history of upbuilding and outbuilding in response to sea-level changes. Most of the sedimentary units is interpreted as platforms under regression and lowstand environments that support is evidences. In particular, shale layer at the basal part of the highstand systems tracts represents the regressive to lowstand of sea level.

Muti-variable Sequence Stratigraphic Model and its Application to Shelf-Slope System of the Southwestern Ulleung Basin Margin (다중변수 순차층서 모델 개발을 통한 울릉분지 남서부 대륙주변부의 층서연구)

  • Yoon Seok Hoon;Park Se Jin;Chough Sung Kwun
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.36-47
    • /
    • 1997
  • This study presents multi-variable sequence model for a broader application of sequence concept proposed by Exxon group. The concept of the multi-variable model is based on the fact that internal organization and boundary type of the sequences are determined by three varying factors including 3rd-order cycles of eustasy, and tectonic movement and sediment influx with 2nd-order changes. Instead of Exxon group's systems tracts, this model adopts parasequence sets as the fundamental building blocks of the sequence, because they are descriptive stratigraphic units simply defined by internal stacking pattern, reflecting interactions of accommodation and sediment influx. Seven sequence types which vary in number and type of internal parasequence sets are formulated as associations of four types of accommodation development and three grades of sediment influx. In the southwestern margin of Ulleung Basin, the multi-variable sequence analysis of shelf-slope sequence shows systematic changes in stratal patterns and the numbs, of constituent parasequence sets (i.e. sequence type). These changes are interpreted to reflect temporal and spatial changes in type and rate of tectonic movement and sediment influx, as a result of back-arc opening and closing. During the back-arc opening, rapid subsidence, continuous rise of relative sea level, and high sediment influx gave rise to sequences dominantly of single progradational parasequence set. In the early stage of back-arc closing accompanied by local contractional deformation, different types of sequences contemporaneously formed depending on the spatial changes in tectonically-controlled accommodation and influx rates. During the subsequent slow back-arc subsidence, rise-dominated relative sea-level cycle was coupled with moderate to high sedimentation rate to have resulted in sequences consisting of $2~3$ parasequence sets.

  • PDF

3-Dimensional Sequence Interpretation of Seismic Attributes in the Structurally Complex Area (복잡한 지질구조 지역에서의 3차원 탄성파 Attribute를 이용한 층서해석 사례)

  • Kim, Kun-Deuk
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.3
    • /
    • pp.149-153
    • /
    • 1999
  • The study was performed as a part of 3-D exploration project of the South Con Son basin, where Korea National Oil Co. (KNOC) and SHELL Company are performing joint operation. In the structurally complex area, seismic facies or lap-out patterns, which are usually the tools for the conventional seismic stratigraphy developed by Exxon Group (Vail et at., 1977), are not easily identifiable. Therefore, stratigraphic informations are mainly extracted from seismic attribute maps of each sequence or systems tracts, and isopach maps in correlation with the stratigraphic information from the wells. The attribute maps of the sequence or systems tract boundaries and isopach map describe the variations of paleodepositional environments. The shape of the attribute maps of the boundaries is a reasonable description of the shape of the paleodepositional surface. With other maps such as isopach and structural maps, the variations of the parasequences in the systems tracts can be projected using the surface attribute maps. The reflection intensity attribute at each sequence or system tract boundary can be related to lithology, facies or porosity distributions. The azimuth attribute of source rock sequence can be used to identify the hydrocarbon migration patterns into the prospects. The overall risks of reservoir rocks, cap rocks, structure and hydrocarbon migrations were computed using the results of the study.

  • PDF