• Title/Summary/Keyword: parametric uncertainty

Search Result 162, Processing Time 0.023 seconds

On-Line Fuzzy Auto Tuning for PID Controller (PID 제어기의 On-Line 퍼지 자동동조)

  • Hwang, Hyeong-Su;Choe, Jeong-Nae;Lee, Won-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.55-61
    • /
    • 2000
  • In this paper, we proposed a new PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kc, $\tau$I, $\tau$D by the Ziegler-Nichols formula using the ultimate gain and ultimate period from a relay tuning experiment. We get error and error change of plant output correspond to the initial value and new proportion gain(Kc) and integral time($\tau$I) from fuzzy tunner. This fuzzy tuning algorithm for PID controller considerably reduced overshoot and rise time compare to any other PID controller tuning algorithms. In real parametric uncertainty systems, the PID controller with Fuzzy auto-tuning give appreciable improvement in the performance. The significant properties of this algorithm is shown by simulation In this paper, we proposed a new PID algorithm by the fuzzy set theory to improve the performance of the PID controller.

  • PDF

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Reliability-based Structural Design Optimization Considering Probability Model Uncertainties - Part 2: Robust Performance Assessment (확률모델 불확실성을 고려한 구조물의 신뢰도 기반 최적설계 - 제2편: 강인 성능 평가)

  • Ok, Seung-Yong;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.115-121
    • /
    • 2012
  • This paper, being the second in a two-part series, presents the robust performance of the proposed design method which can enhance a reliability-based design optimization(RBDO) under the uncertainties of probabilistic models. The robust performances of the solutions obtained by the proposed method, described in the Part 1, are investigated through the parametric studies. A 10-bar truss example is considered, and the uncertain parameters include the number of data observed, and the variations of applied loadings and allowable stresses. The numerical results show that the proposed method can produce a consistent result despite of the large variations in the parameters. Especially, even with the relatively small data set, the analysis results show that the exact probabilistic model can be successfully predicted with optimized design sections. This consistency of estimating appropriate probability model is also observed in the case of the variations of other parameters, which verifies the robustness of the proposed method.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

Numerical framework for stress cycle assessment of cables under vortex shedding excitations

  • Ruiz, Rafael O.;Loyola, Luis;Beltran, Juan F.
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • In this paper a novel and efficient computational framework to estimate the stress range versus number of cycles curves experienced by a cable due to external excitations (e.g., seismic excitations, traffic and wind-induced vibrations, among others) is proposed. This study is limited to the wind-cable interaction governed by the Vortex Shedding mechanism which mainly rules cables vibrations at low amplitudes that may lead to their failure due to bending fatigue damage. The algorithm relies on a stochastic approach to account for the uncertainties in the cable properties, initial conditions, damping, and wind excitation which are the variables that govern the wind-induced vibration phenomena in cables. These uncertainties are propagated adopting Monte Carlo simulations and the concept of importance sampling, which is used to reduce significantly the computational costs when new scenarios with different probabilistic models for the uncertainties are evaluated. A high fidelity cable model is also proposed, capturing the effect of its internal wires distribution and helix angles on the cables stress. Simulation results on a 15 mm diameter high-strength steel strand reveal that not accounting for the initial conditions uncertainties or using a coarse wind speed discretization lead to an underestimation of the stress range experienced by the cable. In addition, parametric studies illustrate the computational efficiency of the algorithm at estimating new scenarios with new probabilistic models, running 3000 times faster than the base case.

Reliability analysis of strip footing under rainfall using KL-FORM

  • Fei, Suozhu;Tan, Xiaohui;Gong, Wenping;Dong, Xiaole;Zha, Fusheng;Xu, Long
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.167-178
    • /
    • 2021
  • Spatial variability is an inherent uncertainty of soil properties. Current reliability analyses generally incorporate random field theory and Monte Carlo simulation (MCS) when dealing with spatial variability, in which the computational efficiency is a significant challenge. This paper proposes a KL-FORM algorithm to improve the computational efficiency. In the proposed KL-FORM, Karhunen-Loeve (KL) expansion is used for discretizing random fields, and first-order reliability method (FORM) is employed for reliability analysis. The KL expansion and FORM can be used in conjunction, through adopting independent standard normal variables in the discretization of KL expansion as the basic variables in the FORM. To illustrate the effectiveness of this KL-FORM, it is applied to a case study of a strip footing in spatially variable unsaturated soil under rainfall, in which the bearing capacity of the footing is computed by numerical simulation. This case study shows that the KL-FORM is accurate and efficient. The parametric analyses suggest that ignoring the spatial variability of the soil may lead to an underestimation of the reliability index of the footing.

Analysis of ASEAN's Stock Returns and/or Volatility Distribution under the Impact of the Chinese EPU: Evidence Based on Conditional Kernel Density Approach

  • Mohib Ur Rahman;Irfan Ullah;Aurang Zeb
    • East Asian Economic Review
    • /
    • v.27 no.1
    • /
    • pp.33-60
    • /
    • 2023
  • This paper analyzes the entire distribution of stock market returns/volatility in five emerging markets (ASEAN5) and figures out the conditional distribution of the CHI_EPU index. The aim is to examine the impact of CHI_EPU on the stock returns/volatility density of ASEAN5 markets. It also examined whether changes in CHI_EPU explain returns at higher or lower points (abnormal returns). This paper models the behaviour of stock returns from March 2011 to June 2018 using a non-parametric conditional density estimation approach. The results indicate that CHI_EPU diminishes stock returns and augments volatility in ASEAN5 markets, except for Malaysia, where it affects stock returns positively. The possible reason for this positive impact is that EPU is not the leading factor reducing Malaysian stock returns; but, other forces, such as dependency on other countries' stock markets and global factors, may have a positive impact on stock returns (Bachmann and Bayer, 2013). Thus, the risk of simultaneous investment in Chinese and ASEAN5 stock markets, except Malaysia, is high. Further, the degree of this influence intensifies at extreme high/low intervals (positive/negative tails). The findings of this study have significant implications for investors, policymakers, market agents, and analysts of ASEAN5.

THREE-STAGED RISK EVALUATION MODEL FOR BIDDING ON INTERNATIONAL CONSTRUCTION PROJECTS

  • Wooyong Jung;Seung Heon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.534-541
    • /
    • 2011
  • Risk evaluation approaches for bidding on international construction projects are typically partitioned into three stages: country selection, project classification, and bid-cost evaluation. However, previous studies are frequently under attack in that they have several crucial limitations: 1) a dearth of studies about country selection risk tailored for the overseas construction market at a corporate level; 2) no consideration of uncertainties for input variable per se; 3) less probabilistic approaches in estimating a range of cost variance; and 4) less inclusion of covariance impacts. This study thus suggests a three-staged risk evaluation model to resolve these inherent problems. In the first stage, a country portfolio model that maximizes the expected construction market growth rate and profit rate while decreasing market uncertainty is formulated using multi-objective genetic analysis. Following this, probabilistic approaches for screening bad projects are suggested through applying various data mining methods such as discriminant logistic regression, neural network, C5.0, and support vector machine. For the last stage, the cost overrun prediction model is simulated for determining a reasonable bid cost, while considering non-parametric distribution, effects of systematic risks, and the firm's specific capability accrued in a given country. Through the three consecutive models, this study verifies that international construction risk can be allocated, reduced, and projected to some degree, thereby contributing to sustaining stable profits and revenues in both the short-term and the long-term perspective.

  • PDF

Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool (경수로 사용후핵연료 저장조 열부하 평가를 위한 연소조건 인자 민감도 분석)

  • Kim, In-Young;Lee, Un-Chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.237-245
    • /
    • 2011
  • As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

Multiple Period Forecasting of Motorway Traffic Volumes by Using Big Historical Data (대용량 이력자료를 활용한 다중시간대 고속도로 교통량 예측)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.73-80
    • /
    • 2018
  • In motorway traffic flow control, the conventional way based on real-time response has been changed into advanced way based on proactive response. Future traffic conditions over multiple time intervals are crucial input data for advanced motorway traffic flow control. It is necessary to overcome the uncertainty of the future state in order for forecasting multiple-period traffic volumes, as the number of uncertainty concurrently increase when the forecasting horizon expands. In this vein, multi-interval forecasting of traffic volumes requires a viable approach to conquer future uncertainties successfully. In this paper, a forecasting model is proposed which effectively addresses the uncertainties of future state based on the behaviors of temporal evolution of traffic volume states that intrinsically exits in the big past data. The model selects the past states from the big past data based on the state evolution of current traffic volumes, and then the selected past states are employed for estimating future states. The model was also designed to be suitable for data management systems in practice. Test results demonstrated that the model can effectively overcome the uncertainties over multiple time periods and can generate very reliable predictions in term of prediction accuracy. Hence, it is indicated that the model can be mounted and utilized on advanced data management systems.