• 제목/요약/키워드: parametric surface model

검색결과 201건 처리시간 0.026초

Edge Flame : Why Is It So Hot in Combustion?

  • 김종수
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.19-27
    • /
    • 2000
  • A turbulent combustion model, based on edge flame dynamics, is discussed in order to predict global extinction of turbulent flames. The model is applicable to the broken flamelet regime of turbulent combustion, in which global extinction of turbulent flame is achieved by gradual expansion of flame holes. The edge flame dynamics is the key mechanism to describe the flame hole expansion or contraction. For flames with Lewis numbers near unity, there is a $Damk{\ddot{o}}hler$ number, namely the crossover $Damk{\ddot{o}}hler$ number, at which edge flame changes its direction of propagation. The parametric region between the quasi-steady extinction condition and the edge-flame crossover condition is a metastable region, in that flames without edge can stay in their burning states while flames with edge have to retract to expand quenching holes. Using the above properties of edge flame, Hartley and Dold proposed a Lagrangian hole dynamics, which allows us to simulate transient variation of quenching holes. In their model, each stoichiometric surface is subjected to a random sequence of scalar dissipation rate compatible to the equilibrium turbulence. Then, each stoichiometric surface will evolve, according to the combustion map, dependent on the scalar dissipation rate and existence of flame edge, If all the burning surfaces are annihilated, the event can be declared as a global extinction. The consequence obtained from the above model also can be used as a subgrid model to determine local extinction occurring in a calculation grid.

  • PDF

ABAQUS 서브루틴을 이용한 레일 보수용접 잔류응력 해석 (Residual Stress Analysis of Repair Welded Rail Using the ABAQUS User Subroutine)

  • 김동욱;전현규;이상환;장윤석
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.551-558
    • /
    • 2016
  • Reduction of welding residual stress is very important in the railway industry, but calculating its distribution in structures is difficult because welding residual stress formation is influenced by various parameters. In this study, we developed a finite element model for simulating the repair welding process to recover a surface damaged rail, and conducted a series of parametric studies while varying the cooling rate and the duration of post weld heat treatment (PWHT) to find the best conditions for reducing welding residual stress level. This paper presents a three-dimensional model of the repair welding process considering the phase transformation effect implemented by the ABAQUS user subroutine, and the results of parametric studies with various cooling rates and PWHT durations. We found that heat treatment significantly reduced the residual stress on the upper rail by about 170 MPa.

촉매연소가 지원된 연소기에서의 표면반응과 가스반응에 관한 연구 (Studies on Surface and Gas Reactions in a Catalytically Stabilized Combustor)

  • 서용석;유상필;정남조;이승재;송광섭;강성규
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.287-298
    • /
    • 2003
  • A numerical investigation of a catalytically stabilized thermal (CST) combustor was conducted for a multi-channel catalyst bed, and both the catalyst bed and thermal combustor were simultaneously modeled. The numerical model handled the coupling of the surface and gas reaction in the catalyst bed as well as the gas reaction in the thermal combustor. The behavior of the catalyst bed was investigated at a variety of operating conditions, and location of the flame in the CST combustor was investigated via an analysis of the distribution of CO concentration. Through parametric analyses of the flame position, it was possible to derive a criterion to determine whether the flame is present in the catalyst bed or the thermal combustor for a given inlet condition. The results showed that the maximum inlet temperature at which the flame is located in the thermal combustor increased with increasing inlet velocity.

  • PDF

구형 산소용기 내 표면균열에 대한 수치파괴역학 평가 (Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder)

  • 조두호;김종민;장윤석;최재붕;김영진;한상인
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.

기초저면의 조도가 기초의 침하 특성에 미치는 영향 (Effect of Base Roughness of Footing on Settlement Characteristics of Footing)

  • 유남재;김영길;박병수
    • 산업기술연구
    • /
    • 제12권
    • /
    • pp.15-23
    • /
    • 1992
  • This research is to investigate the effect of base roughness of footing on characteristics of load-settlement curve. Parametric experiments of small scaled model test were performed with changing the properties of base roughness of model footing; Gluing the vinyl, aluminum, sand paper, sand beneath the model footing surface. The width of model footing and relative density of soil foundation were also changed to investigate their effects on settlement characteristics of footing. The ultimate bearing capacity as well as the initial slope of load-settlement curve obtained from test results were compared with those from limit equilibrium methods proposed by Terzaghi, Hansen and Meyerhof. From test results, it was confirmed that the base roughness affected the failure mechanisms of showing different shapes of slip lines formed beneath the footing.

  • PDF

파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화 (Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling)

  • 김영상;이나리;조창열;박찬우
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.229-237
    • /
    • 2008
  • 본 연구에서는 항공기 날개를 설계하기 위하여 공기역학과 구조해석을 통합한 다분야 설계최적화(MDO) 프레임웍을 구성하였다. 파라미터 모델링 기법을 사용하여 최적화 전 과정을 자동화하였다. 공력해석은 Fluent를 사용하였으며 이를 위한 격자는 CATIA의 파라미터 모델과 Gridgen을 사용하여 자동으로 생성되도록 하였다. 유한요소해석을 위한 격자는 MSC.Patran의 PCL 기능을 사용한 파라미터 방법으로 자동으로 생성되도록 하였다. 공력하중은 volume spline method를 사용하여 구조하중으로 변환시켰다. 최적화 방법은 전역해를 구하기 유리한 반응표면법을 사용하였다. 최적화 문제로 목적 함수는 날개의 무게의 최소화, 제약조건은 양항비와 날개의 변위로 정하였다. 그리고 종횡비, 테이퍼 비 및 후퇴각을 설계변수로 정의하였다. 최적화 시험 결과는 본 MDO 프레임웍이 성공적으로 구성되었음을 보여주었다.

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Critical face pressure and backfill pressure in shield TBM tunneling on soft ground

  • Kim, Kiseok;Oh, Juyoung;Lee, Hyobum;Kim, Dongku;Choi, Hangseok
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.823-831
    • /
    • 2018
  • The most important issue during shield TBM tunneling in soft ground formations is to appropriately control ground surface settlement. Among various operational conditions in shield TBM tunneling, the face pressure and backfill pressure should be the most important and immediate measure to restrain surface settlement during excavation. In this paper, a 3-D hydro-mechanical coupled FE model is developed to numerically simulate the entire process of shield TBM tunneling, which is verified by comparing with real field measurements of ground surface settlement. The effect of permeability and stiffness of ground formations on tunneling-induced surface settlement was discussed in the parametric study. An increase in the face pressure and backfill pressure does not always lead to a decrease in surface settlement, but there are the critical face pressure and backfill pressure. In addition, considering the relatively low permeability of ground formations, the surface settlement consists of two parts, i.e., immediate settlement and consolidation settlement, which shows a distinct settlement behavior to each other.

고온제트에 의한 금형표면 가열기법에서의 유량, 온도, 가열시간의 결정 (Determination of mass flow rate, jet temperature and heating time in mold surface heating technology using hot jet impingement)

  • 최성주;유영은;김선경
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.135-139
    • /
    • 2008
  • Development of surface heating technology using hot jet impingement onto mold inner surface for improvement of pattern transcription. This study is focused on how to control the parameters related to hot jet impingement. The mass flow rate, the jet temperature and the duration of the impingement are major parameters. The nozzle design and other geometric configurations also affect the heat transfer to the surface. In terms of heat transfer analysis, the most important number is the heat transfer coefficient, which is influenced by the mass flow rate, nozzle design, distance between the nozzle tip and the surface. In summary, several parametric studies using the developed model are conducted to investigate the effects of mass flow rate, jet temperature and Heating Time in Surface heating technology using hot jet impingement onto mold.

  • PDF